	 米工業高		校	開講年度	平成28年度 (2	2016年度)	授	業科目	基礎有機	 紀学Ⅱ		
科目基础						/						
科目番号	ACTION IN	0148				科目区分		専門 / 必修				
授業形態		授業				単位の種別と単	位数	履修単位:				
開設学科			用化学科	 斗		対象学年		3				
開設期		前期	131031			週時間数		2				
教科書/教	材	教科書:荒井貞夫著。「丁草			 学のための有機化学 学上・下」, 東京化	ニー・・・・・・ 近学」,サイエンス社参考書 京化学同人「ストライトウィ		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			」,東京化 書店 他	
旦当教員		渡邊 勝			,					,		
到達目標	<u> </u>	•										
1.原子(2.有機(3.有機)	の構造・電 化合物の構 反応におけ	告を立体的	視点でヨ									
レーブ!	<u> </u>								_			
				想的な到達し		標準的な到達し			,	ベルの目安		
評価項目:	1		が	十分理解でき		が理解できる. が理解			が理解で	の構造・電子配置, 化学結合 解できない.		
平価項目2	2			機化合物の構 分理解できる	造を立体的視点で ら.	有機化合物の構 理解できる.				合物の構造を立体的視点で きない.		
評価項目:	3		有分	機反応におけ 理解できる.	ける電子の動きを十	有機反応におけ 解できる.	る電子の	動きを理	有機反応 解できな	における電子 い.	の動きが理	
学科の	到達目標工	頁目との	関係									
教育方法	<u></u> 去等											
既要		有機化物の基準	合物の(I 礎知識を	 L学構造,物: を養う.	理的・化学的性質を	官能基の性質に分	類し系統	充的に学習(ン, より専	門的な有機化	学を学ぶた	
 受業の進	め方・方法	基本的解は深続	まらない	ハ. 有機反応	業を進める. 分子の の電子の流れ(有機	構造や名称等ある 電子論・有機反応	程度暗認機構)(記もいたした の基礎を体行	ちないが. 导し, 高学 	丸暗記に頼っ 年開講の応用	ていては理 科目につな	
主意点		有機化	学は生物	か化学系・応	用化学系必須の学問	であるという認識	を持つ	てほしい. 扌		だ内容は, 反	復的に自学	
		目習さ	れること	とを推奨する	<u> </u>							
受業計画	<u> </u>	1					1					
		週		授業内容			週ごとの到達目標					
		1週		基礎有機化学 I 内容復習			これはDACAなけに生じもフリナンネムなける。					
		2週	アルコ	アルキン(1) - アルキンの命名法, アルキンの構造				IUPAC命名法に準じたアルキンの命名法を理解する				
		3週	アル=	- アルキン(2) - アルキンの合成, アルキンの反応 -				アルキンの求電子付加反応について理解する				
	1stQ	4週	芳香抗	 芳香族化合物(1) - ベンゼン誘導体の命名法 -				ベンゼン及びその誘導体の命名及び構造を理解する				
		5週						ベンゼンの安定性と構造について理解する				
		6週		芳香族化合物(3) - 求電子置換反応(1) -			求電子置換反応について理解する					
		7週		芳香族化合物(4) – 求電子置換反応(2) –			求電子置換反応について理解する					
		8週				. (2)	小七 □					
		9週		中間まとめ 立体化学入門(1) - エナンチオマー-			 鏡像異性体(エナンチオマー)について理解する					
前期		10週		立体化学入門(2) - 立体配置の表示法 -			立体配置の決定法について理解する					
				立体化学入門(2) - 立体配置の表示法 - 立体化学入門(3) - ジアステレオマーとメソ化合物 -								
		11週						ジアステレオマーとメソ化合物について理解する ハロゲン化アルキルの命名法, ハロゲン化アルキルの				
	2ndQ	12週	名法,	ハログン化アルキル(1)			合成について理解する					
		13週	核置抗	換反応(1)	_		SN2反応について理解する					
		14週	核置	ハロゲン化アルキル(3) - ハロゲン化アルキルの 核置換反応(2) - 				え応について				
		15週	八ロゲン化アルキル(4) – 脱離反応,有機金属 -				E2, E1脱離反応, 有機金属試薬について理解する					
		16週	週									
		120/2		内容と到る	童目標 童目標							
<u> </u>	 コアカリ=		<u>の</u> 学習	<u> </u>						전다라 이 내	授業调	
	 コアカリ= 			学習内容	学習内容の到達目	標				到達レベル	以来是	
	 コアカリ= 	キュラムの			学習内容の到達目 有機物が炭素骨格		<u>る</u> ことを	<u>- 説明できる</u>	<u> </u>	到達レバル 3	以来趋	
	コアカリョ	キュラムの				を持つ化合物であ 有する化合物を含	み、IUF	ACの命名		3	以未足	
	コアカリニ	キュラムの			有機物が炭素骨格 代表的な官能基を	を持つ化合物であ 有する化合物を含 名前から構造の変	み、IUF	ACの命名		3	1000	
	コアカリニ	キュラムの			有機物が炭素骨格 代表的な官能基を 、構造から名前、	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。	み、IUF 換ができ	ACの命名		3	1000000	
<u>分類</u>		キュラム(分野	・生物	学習内容	有機物が炭素骨格 代表的な官能基を 、構造から名前、 の結合とΠ結合にこ	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。 質の形を説明でき	み、IUF 換ができ る。	PACの命名》 きる。		3 3 3	1000000	
<u>分類</u>	ᄼᅩᄪᆇᄝᄓ	キュラム(分野	・生物		有機物が炭素骨格 代表的な官能基を、構造から名前、 の結合とΠ結合につ 混成軌道を用い物 の結合とΠ結合の遺 ルイス構造を書く	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。 質の形を説明でき いを分子軌道を使	み、IUF 換ができ る。 い説明	PACの命名注 きる。 できる。	法に基づき	3 3 3 3 3	JX#AZ	
分類		キュラム(分野	・生物	学習内容	有機物が炭素骨格 代表的な官能基を、構造から名前、 の結合とΠ結合につ 混成軌道を用い物 の結合とΠ結合の違 ルイス構造を書く ことができる。	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。 質の形を説明でき いを分子軌道を使 ことができ、それ	み、IUF 換ができ る。 い説明	PACの命名注 きる。 できる。	法に基づき	3 3 3 3 3 3	12.7.2	
モデルコ分類		キュラム(分野	・生物	学習内容	有機物が炭素骨格 代表的な官能基を、構造から名前、 の結合とΠ結合につ 混成軌道を用い物 の結合とΠ結合の遺 ルイス構造を書く ことができる。 共鳴構造について	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。 質の形を説明でき いを分子軌道を使 ことができ、それ 説明できる。	み、IUF 換ができ る。 Eい説明 を利用し	PACの命名を る。 できる。 レて反応に終	まに基づき	3 3 3 3 3 3 3	12.70	
分類		キュラム(分野	・生物	学習内容	有機物が炭素骨格 代表的な官能基を、構造から名前、 の結合とΠ結合につ 混成軌道を用い物 の結合とΠ結合の違 ルイス構造を書く ことができる。	を持つ化合物であ 有する化合物を含 名前から構造の変 いて説明できる。 質の形を説明でき いを分子軌道を使 ことができ、それ 説明できる。	み、IUF 換ができ る。 Eい説明 を利用し	PACの命名を る。 できる。 レて反応に終	まに基づき	3 3 3 3 3 3 3	12.7.2	

			分子の三次元的る。	な構造がイメー	ジでき、異性体について	説明でき	3	
			構造異性体、シス	スートランス異り	生体、鏡像異性体などを	説明でき	3	
	化合物の立体化学に関して、その表記法により正しく表示できる。						3	
			代表的な官能基	3				
	それらの官能基を含む化合物の合成法およびその反応を説明できる。						3	
	代表的な反応に関して、その反応機構を説明できる。					3		
			電子論に立脚し	、構造と反応性の	の関係が予測できる。		2	
			反応機構に基づ	反応機構に基づき、生成物が予測できる。				
評価割合								
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計	-
総合評価割合	100	0	0	0	0	0	100	
基礎的能力 0		0	0	0	0	0	0	
専門的能力 100		0	0	0	0	0	100	1
分野横断的能力	0	0	0	0	0	0	0	