	米工業高等	寺男門:	学校	開講年度	令和03年度 (2	.021年度)	授業科目	トライボ	ロジー解析	 f学
科目基礎	楚情報 一									
科目番号 7A14						科目区分	専門 / 選択			
受業形態		講義				単位の種別と単				
用設学科		機械)	・電気シス	ステム工学専り	女(機械工学コース	対象学年	専2			
						週時間数	2			
対書/教	 (材	配布	資料により	 D説明する.		•				
当教員	•		直志							
引達目標	=									
L. 相対道 2. 各種湖 3. 表面技		閏滑状態 と発生機	の理解 構に関する	E現象の本質の る理解 る)理解					
レーブリ	 Jック									
			理			標準的な到達レ	 ベルの目安	未到達し	 ベルの目安	
対運動を理解	を行う2面間 解できる.	の摩擦	・摩耗機		接触面に生ずる現				接触現象について説明できない.	
	こついて理解	解できる	機で	 械要素の潤滑 説明できる.	面を流体潤滑理論	流体潤滑理論を理解し説明できる 流体潤		る流体潤滑	滑理論が説明できない.	
表面損傷の と説明でる	の種類と発生 きる.	主メカニ		生した接触面 き,対策を提	損傷の原因が特定 案できる.				傷の種類と発 できない.	生メカニズ
 学科の到	到達目標項	頁目との	 の関係							
ABEE C-										
文育方法 数育方法										
腰	<u>ы 13</u>	トラ 本講 る。	イボロジ- 義では、	ーとは、"摩擦 トライボロジ-	、摩耗、潤滑"を工 一関連の諸問題におり	学的に取り扱う学 ナる基本的な原理	問分野である。 !・原則、および	その考え方を	習得すること	を目的とす
受業の進む	め方・方法	基本	 的な項目(i して課す。	こついて解説	する。本科目は学修り	単位であるので授	業時間以外での	学修が必要で	あり, これを	レポート課
注意点		中間	試験30点	と期末試験30	点,レポート40点 <i>0</i> とする場合がある.)合計100満点とし	し60点以上を合	格とする。再	試験は必要に	応じて行う
受業の履	属性・履修	多上の[区分							
コ アクラ	ニィブラーニ	ニング		ICT 利用		☑ 遠隔授業対応	2	□ 実務網	経験のある教	員による授業
授業計画		週 1週	授業に	内容 イボロジーの	世界		週ごとの到達目		的課題が理象	アできる
		2週			真実接触理論)1*		いずれも平滑な球体と平面,円筒と平面の る変形と接触応力が計算できる.			
		3週	接触((ヘルツ接触、	真実接触理論)2*		粗さを有する面の接触における真実接触面積の概念 ,摩擦摩耗における役割を説明できる			積の概念と
	3rdQ	4週	すべ	り摩擦1			摩擦力の発生メカニズムを説明できる.			
		5週	すべり	り摩擦2			Junction Growthの概念と潤滑剤の効果についてきる。			ついて説明
		C)H	± a" i	り座域で			表面の温度上昇の考え方が理解できる.			
		6週		り摩擦3 い麻物2*						
		7週		り摩擦3* 			表面の温度上昇	トノノ゚ロ 昇じさる).	
後期		8週	中間				ー レイ ノルズ方程式を道出できる			
		9週		本潤滑1			レイノルズ方程式を導出できる。			
		10週 济		6体潤滑2*			レイノルズ方程式を各種トライボ要素に適用できる。			
	4thQ	11週		1111年月月1 き		弾性流体潤滑理論を流体潤滑理論との違いから説明できる 弾性流体潤滑理論による諸現象の説明と油膜厚さの記				
		12週		流体潤滑2*			算ができる.	できる.		
		13週			(潤滑油・グリース・	,	ついて説明でき	滑油, グリース, 固体潤滑剤の摩擦摩耗低減原理に いて説明できる. 耗の分類(凝着, アブレッシブ, フレッチング)に		
		14週	,				ついて説明でき	の力規(凝有,アフレッシン,フレッテング)に て説明できる. き発生条件,転がり疲れ現象について説明できる		
		15週	15週 表面損傷(摩耗、焼付き		ま付き、転がり疲れ)2 	けき、転がり疲れ)2 燃やさる				
			期末	試験						
		16週	1/47/1/5				•			
= - ∵u.=	 アカロラ			内窓と到る	E 日標					
	 コアカリ=	トュラム	ムの学習	内容と到達		<u></u>			到達しがま	拉莱油
	 	トュラム		内容と到達 学習内容	学習内容の到達目標				到達レベル	授業週
	コアカリニ	トュラム	ムの学習		学習内容の到達目標 滑り軸受の構造と	重類を説明できる			4	後11
Eデル□ }類 専門的能;	/\mzp\/	キュラ』	ムの学習	学習内容	学習内容の到達目標	重類を説明できる 種類、寿命を説	明できる。	/*. + =\u00e4000		

			熱流体	流体の性質を表す各種物理量の定義と単位を理解し、適用できる。							
評価割合											
	試験	レ	ポート	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合	50	50	0	0	0	0	0	100			
基礎的能力	0	0		0	0	0	0	0			
専門的能力	50	50	0	0	0	0	0	100			
分野横断的能力	0 0	0		0	0	0	0	0			