		等専門学校	Σ	開講年度	平成30年度 (2	018年度)	授	業科目に	5分子材	料特論			
科目基礎	計報					T							
科目番号		6M18				科目区分		専門 / 選択					
受業形態		講義				単位の種別と単位	位数	学修単位: 2	!				
開設学科		物質工学	専攻	(材料工学コ	ース)	対象学年		専1					
開設期	没期 後期				週時間数			2					
教科書/教	材			<u> </u>									
旦当教員		渡邊 勝	云										
到達目標	Ē												
2.プラス	スチック材料	4とゴム材料	柳違い	質について理 いについて理 重要性につい	解を深める 解を深める て理解を深める								
レーブし			-		· · · · · · · · · · · · · · · · · · ·								
			理	理想的な到達レベルの目安標準的な到達レイ				安	未到達し	ノベルの目安			
=T/TT = T										分子材料の熱的性質・機械的			
評価項目1				質について十分理解できる. 質について理解で				できる. 🧗 🗓		質について理解できない.			
評価項目2				いについて十分理解できる. いについて理解で			できる. いについ			チック材料とゴム材料の違 いて理解できない.			
平価項目3	\		自重	動車産業に占 要性について						産業に占める高分子材料の について理解できない.			
学科の至	J達目標 ^項	目との関	係	_			_						
ABEE B-													
数育方法 数													
高分子材料 ら大変重要 き,高分子			料は, 要なな 子材料 産業で	料は,現在の材料工学・物質工学の分野において,使用量,高機能性の発現,応用分野の広がりなどの観点か 要な材料となっている.本講では,これまでに学んだ高分子化学,有機化学,物理化学などの基礎知識に基づ 子材料を今後取り扱う上で必要となる高分子材料の熱的性質や機械的性質について知識を深める.また,久留 養業であるゴム産業に焦点を当て,ゴム材料の各種物性等基礎的な概念に関する理解を深める.									
受業の進め	か方・方法	板書を主	体とし	ノた講義形式:	を中心に,適宜パワ-	-ポイント教材や	ビデオ碁	枚材,補足資	料等を加え	えて行う.			
注意点		本科で学 として, 50%+期	んだ語 授業内 ま試験	高分子化学, 内容に沿った 途50%) で行	有機化学,物理化学領 最新の技術動向調査(う. 再試験は必要に	等の基礎知識を再 に関するレポート 応じ実施する。6	度整理し 課題を数 0点以上	っておくこと 数回提示する を修得とする	が望まし . 評価(ハ. また, 自 は確認試験(学学修内容 中間試験		
受業計画							-,,,,,						
	-	週	授業区	 力突			调ブレ	の到達目標					
		1週	イントロダクション, 高分子製造に関する基礎知識				高分子製造に関する基礎知識を修得する						
		2週	イントロタクション, 同力士殺垣に関する基礎知識 高分子物性に関する基礎知識				高分子物性に関する基礎知識を修得する						
		3週		高力士物性に関する基礎和識 高分子材料の熱的性質				高分子材料の熱的性質について理解を深める					
		4週	1					高分子材料の機械的性質について理解を深める					
				高分子材料の機械的性質									
	3rdQ	5週	とエ	プラスチック材料とゴム材料(1) – エンタルピー弾性 とエントロピー弾性				エンタルヒー弾性とエントロヒー弾性の違いについて 理解を深める					
	_	6週	プラン形 -	プラスチック材料とゴム材料(2) – 弾性変形と流動変				弾性変形と流動変形について理解を深める					
		7週	プラス	ループラスチック材料とゴム材料(3) – 粘弾性 –				静的及び動的粘弾性について理解を深める					
८. 廿 □		8週	プラブ 力緩和	プラステックが付き コム 1974 (3) 相手は プラスチック材料とゴム材料 (4) - 粘弾性モデルと応 カ緩和, クリープ, 応カ - ひずみ測定 -									
後期	4thQ	9週	プラス	プラスチック材料とゴム材料(5)-まとめ-				ゴム材料とプラスチック材料の違いに関して理解を済める					
		10週	自動車	自動車産業と高分子材料(1)				プラスチック材料の自動車への応用について理解を認める					
		11週	自動車	車産業と高分	子材料(2)			チック材料の	自動車へ	の応用につい	って理解を認		
		12週	自動車	車産業と高分	子材料 (3)		ゴム材	料の自動車へ	の応用に	ついて理解を	上深める		
		13週	自動車	車産業と高分	子材料 (4)		ゴム材料の自動車への応用について理解を深め				<u></u> -:深める		
		14週	自動車	車産業と高分	子材料 (5)		ゴム材料の自動車への応用について理解を深			・ 深める			
		15週	高分子材料特論総括				講義内容全体を総括する						
	<u>L</u>	16週											
<u>ーー</u> モデルニ]アカリキ	<u>-</u> ユラムσ)学習	内容と到達	<u></u>								
 }類		分野		学習内容	学習内容の到達目標					到達レベル	授業週		
専門的能力					有機物が炭素骨格を持つ化合物であることを説明できる。			0	3	T			
					代表的な官能基を有する化合物を含み、IUPACの命名法に 、構造から名前、名前から構造の変換ができる。			3					
					σ結合とπ結合について説明できる。			3					
					混成軌道を用い物質の形を説明できる。				3				
	→ 分野別の 門工学	専 化学・生 系分野	生物		誘起効果と共鳴効果を理解し、結合の分極を予測できる。			0	3				
	′ 門工学		3		σ結合とn結合の違いを分子軌道を使い説明できる。				3				
					ルイス構造を書くことができ、それを利用して反応に結びついことができる。		びつける	3					
					大鳴構造について説明できる。				3				
					炭化水素の種類と、それらに関する性質および代表的な反応を訪			反応を説	3				
					灰化水系の種類と、それらに関する性 明できる。		エデックの〇 ハオメドンクメメルパで試						

			芳香族性についてと	ニュッケル則に基っ	びき説明できる。		3		
	分子の三次元的な構造がイメージでき、異性体について説明で る。						3		
	構造異性体、シスートランス異性体、鏡像異性体などを説明できる。						3		
		化合物の立体化学に関して、その表記法により正しく表示できる。					3		
		代表的な官能基に関して、その構造および性質を説明できる。					3		
	それらの官能基を含む化合物の合成法およびその反応を説明できる。						3		
	代表的な反応に関して、その反応機構を説明できる。						3		
	高分子化合物がどのようなものか説明できる。								
	代表的な高分子化合物の種類と、その性質について説明できる。								
	高分子の分子量、一次構造から高次構造、および構造から発現する性質を説明できる。								
	高分子の熱的性質を説明できる。								
	重合反応について説明できる。						3		
		重縮合・付加重合・重付加・開環重合などの代表的な高分子合成 反応を説明でき、どのような高分子がこの反応によりできている か区別できる。							
	ラジカル重合・カチオン重合・アニオン重合の反応を説明できる 。						3		
	ラジカル重合・カチオン重合・アニオン重合の特徴を説明できる。						3		
		電子論に立脚し、構造と反応性の関係が予測できる。							
			反応機構に基づき、生成物が予測できる。						
評価割合			_						
	試験	発表	相互評価	態度	ポートフォリオ	その他		合計	
総合評価割合	100	0	0	0	0	0		100	
基礎的能力	0	0	0	0	0	0		0	
専門的能力	100	0	0	0	0	0		100	
分野横断的能力	0	0	0	0	0	0	(0	