有明工業高等専門学校		開講年度	令和02年度 (2	(020年度)	授業科目	専門基礎演習			
科目基礎情報									
科目番号	2E001			科目区分	専門 / 必	修			
授業形態	授業			単位の種別と単位数	数 履修単位	: 1			
開設学科	創造工学科(エネルギーコース)			対象学年	2	2			
開設期	後期			週時間数	後期:1	後期:1			
教科書/教材	電気基礎(上):川島·斎藤 共著,東京電機大学出版局/電気基礎(下):津村,宮崎,菊池 共著,東京電機大学出版 局								
担当教員	池之上 正人								
別達日煙									

|到達日標

- 1.電気回路の基礎について理解し、計算することができる。 2.直流回路の基礎および直流回路に関する法則について理解し、これらを用いて直流回路の計算ができる。 3.電気電子計測に関する基礎的事項について理解できる。 4.計測における単位や標準について理解することができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	電気回路の基礎について理解し ,計算することができ,課題解決 に適用できる。	電気回路の基礎について理解し,計算することができる。	電気回路の基礎について理解し , 計算することができない。
評価項目2	直流回路の基礎および直流回路に 関する法則について理解し,これ らを用いて直流回路の計算ができ ,課題解決に適用できる。	直流回路の基礎および直流回路に 関する法則について理解し,これらを用いて直流回路の計算ができる。	直流回路の基礎および直流回路に 関する法則について理解し,これ らを用いて直流回路の計算ができ ない。
評価項目3	電気電子計測に関する基礎的事項 について理解し、説明することが できる。	電気電子計測に関する基礎的事項 について理解できる。	電気電子計測に関する基礎的事項 について理解できない。
評価項目4	計測における単位や標準について 理解し,説明することができる。	計測における単位や標準について 理解することができる。	計測における単位や標準について 理解することができない。

学科の到達目標項目との関係

学習・教育到達度目標 B-3

教育方法等

概要	現代社会において、電気は必要不可欠なものである。また、目に見えない電気的な量を計測することは、工学の分野や 産業界において一般的でかつ必要不可欠な技術である。本科目では、電気電子工学における基礎となる直流回路と電気 電子計測に関する基礎について、講義・演習・実験を通して学習する。
授業の進め方・方法	講義形式で行い,適宜,演習等を行う。また,後半の一部では,実験形式で行う。
注意点	数学や物理など理系科目との関連が深いため、これらの科目を履修していることが望ましい。 評価については、講義形式は、試験80%、レポート等20%、実験形式はレポート90%、実験中の態度等10%で評価し 、最終成績は講義形式60%、実験形式40%で評価する。 また、レポート等の提出物が一つでも未提出である場合には、未履修とするので、注意をすること。

授業計画

		週	授業内容	週ごとの到達目標
		1週	ガイダンス 電流・電圧・起電力 オームの法則	電流・電圧・起電力について説明できる。 オームの法則を説明し,電流・電圧・抵抗の計算がで きる。
		2週	直列回路,並列回路,直並列回路 キルヒホッフの法則(1)	合成抵抗や分圧・分流の考え方を説明し,直流回路の計算に用いることができる。 キルヒホッフの法則を説明し,直流回路の計算に用いることができる。
		3週	キルヒホッフの法則(2) 直流回路網の計算	キルヒホッフの法則を説明し,直流回路の計算に用いることができる。
3rc 後期	3rdQ	4週	ホイートストンブリッジ 電池の内部抵抗	ブリッジ回路を計算し,平衡条件を求めることができる。 電池の内部抵抗を説明し,直流回路の計算に用いることができる。
		5週	電力・電力量 ジュールの法則	電力量と電力を説明し、これらを計算できる。 ジュールの法則を説明し、これを用いた計算ができる。
		6週	抵抗率・導電率 抵抗の温度係数	抵抗率と導電率を説明し,これらおよびこれらを用いた計算ができる。 抵抗の温度係数を理解し,これを用いた計算ができる。
		7週	単位と標準 測定値の取り扱い	電気に関する単位と標準器について理解できる。 有効数字や誤差について理解し,これらを考慮した計 測値の計算ができる。
		8週	中間試験	
		9週	計測方法の分類指示電気計器の種類と取り扱い	計測方法の分類(零位法/偏位法,直接測定/間接測定)を説明できる。 指示電気計器の種類について説明できる。 指示電気計器の取り扱いについて理解できる。
4th	4thQ	10週	実験ガイダンス 安全指導	直流回路の実験を安全に行うための基本知識を習得する。
		11週	実験1:抵抗の直並列回路	抵抗の直並列回路について,実験を通して理解し,報告書をまとめる事ができる。
		12週	実験2:キルヒホッフの法則	キルヒホッフの法則について,実験を通して理解し ,報告書をまとめる事ができる。

		13)	周	実験3	- ミ験3:ホイートストンブリッジによる抵抗測定と電力 D測定			ホイートストンブリッジおよび電力について,実験を 通して理解し,報告書をまとめる事ができる。			
		14ì	周	実験4	: 乾電池の内	部抵抗測定	抵抗測定 乾電池の内部抵抗について, 告書をまとめる事ができる。				
		15ì	周	期末詞	式験						
		16ì	周	答案》							
モデルコス	アカリ	ノキュ	ラムの	学習	内容と到達	目標					
分類		-	分野		学習内容	学習内容の到達目標			到達レベノ	レ 授業週	
		自然科学			電気	オームの法則から、電圧、電流、抵抗に関する計算ができる。			3	後1	
基礎的能力	自然					抵抗を直列接続、及び並列接続したときの合成抵抗の値を求めることができる。				3	後2
						ジュール熱や電力を求めることができる。				3	後5
	分野別の専 門工学					電荷と電流、電圧を説明できる。				4	後1
			D専 電気・電子 系分野			オームの法則を説明し、電流・電圧・抵抗の計算ができる。				4	後1
						キルヒホッフの法則を用いて、直流回路の計算ができる。				4	後2,後3
専門的能力					電気回路	合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができ る。				4	後2,後3
						ブリッジ回路を計算し、平衡条件を求められる。			4	後4	
						電力量と電力を説明し、これらを計算できる。				4	後5
評価割合											
試験発表			相互評価	態度	ポートフォリオ	その他	台	·計			
総合評価割合	<u>`</u>	0	0			0 0		0	100	100 100	
基礎的能力		0 0		0		0	0	0	100	1	00
専門的能力		0 0		0		0	0	0	0	0	_
分野横断的能	わ	0 0		0		0	0	0	0	0	