		等専門学校	交 開講年度 平成31年度 (2019年度)	授業科目	電子工学実験Ⅱ			
科目基		0011		NDE A	丰 吧 / \.	l/A			
科目番号 授業形態		0044 実験・	宇 羽	科目区分	専門/必				
授美形態 開設学科			<u> </u>	単位の種別と単位 対象学年		; 1			
<u>用設子科</u> 開設期	•	周遠工 前期	ナイイイ(旧秋ンヘアムコー人)	」	1				
型取别 教科書/教					[τ				
担当教員			民信,石川 洋平,ゴーチェ ロビック	76					
到達目		I IZZI Z							
電気回路確認でき	や論理回路ること。	、電子回路	などで学んだ理論を、実際の回路部品に	こよるパルス回路・ト	・ランジスタ回路	8等により、その動作や特性を観測			
ルーブ	リック			1#2##5#5 #10##		+ 70 + 1			
			理想的な到達レベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安			
評価項目	1		パルス回路の動作や特性を観測・ 確認でき、座学で学んだ理論を活 かしてレポートが作成できる。	パルス回路の動作 確認できる。	や特性を観測・	パルス回路の動作や特性を観測 確認できない。			
評価項目	2		トランジスタを用いた回路の動作 や特性を観測・確認でき、座学で 学んだ理論を活かしてレポートが 作成できる。	トランジスタを用や特性を観測・確	いた回路の動作 認できる。	トランジスタを用いた回路の動作や特性を観測・確認できない。			
学科の	到達目標	項目との	関係						
	育到達度目								
教育方法	 法等								
概要		4年次 実習を 専門科	の電子工学実験Ⅱ・Ⅲでは、主にパルス 行う。したがって、電気回路、電子回路 目を理解しておく必要がある。また、逆	(回路技術、マイクロ 3、論理回路、計算機 がに実験・実習を通じ	プロセッサによ 江学、プログラ て、これらの科	る機器の制御技術について、実験 ラング、情報処理基礎などの幅広い 目の理解をより深めることになる。			
授業の進	め方・方法		電気回路、電子回路、論理回路、ボード						
注意点		得られ 、実験 作成は	た実験・実習の結果を含む、テーマ毎の の結果の分析・考察、ならびにそれらを 授業時間外に行う。)レポートにより評価 きまとめたレポートの	する。理論的な わかりやすさ <i>の</i>	、現象・動作の実験による検証と理 程度を評価する。基本的にレポー			
授業計	画								
		週	授業内容		過ごとの到達目標	-			
前期		1週	実験の位置付けと解説	L	実際の実験に取り組む前に、この実験・実習の位置 けを理解する。また、実験の進め方やレポートの損 方法、評価方法などについて認識すること。				
		2週	パルス回路の概要	[[]	パルス回路の実験の論理的な基盤となる、電気回路 電子回路、論理回路などの復習し、実験で用いる回 について理解すること。				
	1stQ	3週	各種計測機器類の概要	7	実験で用いる計測機器類や器具類について、その 方法を含めて、役割等を理解する。同時に、実験 安全確保のための注意事項についても理解するこ				
		4週	パルス回路	行	微分・積分回路のパルス応答を理解できること。				
		5週	パルス回路		クリップ・クランプ回路のパルス応答を理解できる と。				
		6週	パルス回路			「回路のパルス応答を理解できるこ			
		7週	パルス回路	Į#	無安定・単安定マルチバイブレータを理解でき				
		8週	パルス回路		。 双安定マルチバイブレータ・シュミットトリガ回路 ² 理解できること。				
	2ndQ	9週	パルス回路	8	各種パルス回路の種類と実験の意図を復習し理解があること。				
		10週	伝送線路のパルス特性		同軸ケーブルを用いた伝送線路のパルス特性(反射減衰・遅延)を理解できること。				
		11週	パルス回路実験のまとめ		パルス回路の各テーマで疑問に感じた点の復習や、 実験などを行い、実験の理解を深める。				
		12週	トランスの特性・電力量と積算電力記	十	トランスの機能である電圧変換・インピーダンスダ ・電気的分離(絶縁)を理解できること。および、 算電力計の原理を理解し、電力量の計測方法と力容 善について理解できること。				
		13週	演算増幅器	ì	演算増幅器の諸特性を計測・検証できること。				
		14週	電子回路Ⅰ・電子回路Ⅱとの関連解説	兑 []	電子工学実験IIで学んだ知識と座学の電子回路I・Iとの関連を学び、学習する内容との連携について解できること。				
		15週	パルス・トランス・電力演算増幅器実		全テーマを通した疑問点を復習するとともに、再実 などを行い実験の理解を深める。				
		16週	1						
				-					

		雷気・雷	子		オシロスコープを用いて実際の波形観測が実施できる。						前4		
専門的能力	分野別の 学実験・	電気・電 系分野【 験・実習	実 電気・管	電気・電子 系【実験実 習】	電気・電子系の実験を安全に行うための基本知識を習得する。						前1		
כלשונייו ודא	習能力	へ 験・実習 力】	能習		増幅回路等(トランジスタ、オペアンプ)の動作に関する実験結果 を考察できる。						前4,前13		
評価割合													
	試験		発表		相互評価	態度	ポートフォリオ	その他		合計			
総合評価割合	à 0		0		0	0	100	0		100			
基礎的能力	0	0 0			0	0	0	0 0		0			
専門的能力	0	0 0			0	0	100	0	100		•		
分野横断的能	:力 0	0 0			0	0	0	0		0	•		