北九州工業高等専門学校		開講年度	令和02年度 (2	2020年度)	授業科目	基礎制御工学Ⅱ			
科目基礎情報									
科目番号	0082			科目区分	専門 / 必	修			
授業形態	授業			単位の種別と単位数	数 履修単位	: 1			
開設学科	生産デザイン	工学科(電気電	子コース)	対象学年	5				
開設期	前期			週時間数	2				
教科書/教材	「自動制御理	論」 樋口 龍	雄 (森北出版)						
担当教員	松本 圭司								
到達目標									
1. フィードバックシステムの安定判別法について説明できる									

- 2. システムの定常特性について、定常偏差を用いて説明できる 3. 補償を用いた制御応答の改善について説明できる

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
評価項目1	フィードバックシステムの様々な 安定判別法を理解しており、算出 することができる	フィードバックシステムの安定判 別法について説明できる	フィードバックシステムの安定判 別法を理解していない		
評価項目2	定常特性の定義を理解した上で、 定常偏差を用いて説明できると共 に値を算出することができる	システムの定常特性について、定 常偏差を用いて説明できる	システムの定常特性について理解 していない		
評価項目3	制御応答を補償する意味を理解しており、応答改善について説明できる		補償を用いた制御応答の改善を理解していない		

学科の到達目標項目との関係

準学士課程の教育目標 B① 専門分野における工学の基礎を理解できる。 準学士課程の教育目標 B② 自主的・継続的な学習を通じて、専門工学の基礎科目に関する問題を解くことができる。 準学士課程の教育目標 C① 実験や実習を通じて、問題解決の実践的な経験を積む。 専攻科教育目標、JABEE学習教育到達目標 SB① 共通基礎知識を用いて、専攻分野における設計・製作・評価・改良など生産に関わる専門工学の基礎を理解できる。 専攻科教育目標、JABEE学習教育到達目標 SB② 自主的・継続的な学習を通じて、専門工学の基礎科目に関する問題を解決できる。 専攻科教育目標、JABEE学習教育到達目標 SC① 専門工学の実践に必要な知識を深め、実験や実習を通じて、問題解決の経験を積む。

教育方法等

概要	本授業では、基礎制御工学 I で学んだ伝達関数によるシステムの表現をもとにし、安定性、定常特性といったシステムの特性評価法の理解を目的とする。 自動制御理論の習熟を通じて、システムに対する直観力や視野の広さを見に付ける。
授業の進め方・方法	既習済みの内容(基礎制御理論 I)の理解を深めておくこと。
注意点	電気回路学、電機機器学の知識を前提として講義を進めるため、基礎科目の理解を深めておくことが望ましい。

授業計画

		週	授業内容	週ごとの到達目標			
		1週	概説	制御システムの評価法の必要性が理解できる			
		2週	システムの安定性	特性方程式を用いたシステムの安定性が理解できる			
		3週	ラウス・フルビッツの安定判別法	ラウス・フルビッツの安定判別法を用いてシステムの 安定・不安定を判別できる			
		4週	ナイキストの安定判別法	ナイキスト線図によって表現されるシステムの安定・ 不安定を判別できる			
	1stQ	5週	ナイキスト線図における安定度	ゲイン余裕、位相余裕などの指標を用いたシステムの 安定度を計算することができる			
		6週	ボード線図における安定度	ボード線図によって表現されるシステムの安定・不安 定を判別できる			
		7週	安定性に関する演習	ここまでの安定性に関する演習問題を解くことができる			
前期		8週	中間試験	1~7週までの内容を網羅した試験により、授業内容の理解の定着を図る			
		9週	過渡特性(速応性)	立ち上がり時間、整定時間などの過渡特性が理解できる			
		10週	定常特性	定常偏差を用いて定常特性が説明できる			
		11週	制御系の内部モデル原理	制御系の形(0形、1形、2形)の目標値に対する応答 波形を理解することができる			
		12週	フィードバック制御系の設計	PID制御系について理解できる			
	2ndQ	13週	補償による応答改善	位相遅れ要素、位相進み要素を用いた特性の改善が理 解できる			
		14週	補償による応答改善	位相遅れ進み要素、フィードバック補償を用いた特性 の改善が理解できる			
		15週	期未試験	9〜14週までの内容を網羅した試験により、授業内容 の理解の定着を図る			
		16週	答案返却	定期試験の内容が理解できる			

モデルコアカリキュラムの学習内容と到達目標

分類 分野		分野	学習内容	学習内容の到達目標	到達レベル	授業週
専門的能力 分野別の専門工学	電気・電子	南左同吃	RL直列回路やRC直列回路等の単エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。	3		
	門工学	系分野	電気回路	RLC直列回路等の複エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。	4	

			計	·測 S	I単位系における基	基本単位と組立単位	なについて説明でき	·る。	3	
				ſī.	云達関数を用いたえ	ンステムの入出力表	現ができる。		4	前2,前3,前 4,前9
					ブロック線図を用い	ヽてシステムを表現	!することができる	0	4	
				3	システムの過渡特性	生について、ステッ	プ応答を用いて説	明できる	4	前2,前3,前 4,前9,前13
			制	御	システムの定常特性について、定常偏差を用いて説明できる。					前2,前3,前 4,前10,前 11,前12,前 13,前14
					システムの周波数特	持性について、ボー	- ド線図を用いて説	明できる	4	前2,前6
				-	フィードバックシステムの安定判別法について説明できる。					前2,前3,前 4,前5,前 6,前7
評価割合										
	試験		小テス	スト	相互評価	態度	ポートフォリオ	その他	슫	計
総合評価割合	50		50		0	0	0	0 1		00
基礎的能力	0		0		0	0	0	0	0	
専門的能力	50 !		50		0	0	0	0	10	00
分野横断的能力	的能力 0 0		0		0	0	0	0	0	