佐世伊			開講年度 平成31年度(2019年度)	授業科目	情報処理 I
科目基礎			, , , , , , , , , , , , , , , , , , , ,			
科目番号	-113114	0078		科目区分	専門 / 必修	z .
 受業形態		演習		単位の種別と単位		
開設学科物質工学科			科	対象学年	3	
開設期	後期			週時間数	後期:2	
教科書/教	教材 数値計算法		法 新装版 三井田・須田著 (森川	出版)	d版)	
旦当教員		中村 嘉男	1			
到達目標	Ę					
2. ガウス 3. 矩形法 4. 最小二 5. 常微分	く・ジョルタ 法、台形法、 上乗法を用い 分方程式の解	ブン、ヤコビ シンプソン \た直線近似	方程式の解を求める計算方法を習得る 法による連立方程式の解を求める計算 法による連立方程式の解を求める計算 を開いた数値積分の計算方法を習得 の計算方法を習得する (A-2) 算方法を習得する (A-2)	育方法を習得する(Δ	2)	
ルーブリック			型想的な到達レベルの目安 理想的な到達レベルの目安	標準的な到達レク	 ジルの目安	未到達レベルの目安
評価項目1			ニュートン法を用いて多次元の非 線形方程式の解を求める計算方法 を習得する	1	引いて非線形方程	ニュートン法を用いて非線形方程 式の解を求める計算方法を習得で きていない
評価項目2			ガウス・ジョルダン、ヤコビ法、 ガウス・ザイデル法による連立方 程式の解を求める計算方法を習得 する	ガウス・ジョルタ よる連立方程式の 方法を習得する	ブン、ヤコビ法に)解を求める計算	ガウス・ジョルダン、ヤコビ法に よる連立方程式の解を求める計算 方法を習得できていない
評価項目3			矩形法、台形法、シンプソン法の 各公式を導き、各方法を用いた数 値積分の計算方法を習得する	矩形法、台形法、 用いた数値積分の する		矩形法、台形法、シンプソン法を 用いた数値積分の計算方法を習得 できていない
評価項目4			最小二乗法を用いた多項式近似の 計算方法を習得する	最小二乗法を用い 算方法を習得する		最小二乗法を用いた直線近似の計 算方法を習得できていない
評価項目5			常微分方程式の解を求める計算方法としてオイラー法以外の方法も 習得する	常微分方程式の解を求める計算方 法を習得する		常微分方程式の解を求める計算方 法を習得できていない
学科の到	達目標項	目との関	係			
数育方法 数育方法	 等					
既要	4.13	企業にお	いて、コンピュータシステム構築やW ミングの基礎を演習形式で授業を行う	/EBシステム制作を ものである。	担当していた教員	がこの経験を活かし、C言語を用い
授業の進め	方・方法	予備知識 講義室: 授業形式 学生が用	: Windowsパソコンの操作法、Ex ICT1 : 講義と演習 意するもの: ファイルバインダー、		までの数学で学んた	芒内容
注意点		自己学習 毎回の 試験時 オフィス	に課す演習課題(40%)と中間、期実 の指針: 授業で課題を課すので、自分で解ける には、例題及び課題を理解できている	るようにすること らこと	り評価し、60点以	人上を合格とする.
授業計画	ī					
~~ <u>~</u>		週	授業内容	[:	 週ごとの到達目標	
		-	授業ガイダンス/Excelの基本操作の			 解し、Excelの基本操作が説明でき
		2週	2分法			ローチャートが書け、Excelで計算
		3週	ニュートン法		ニュートン法のフ きる	ローチャートが書け、Excelで計算
	1	小 语	連立一次方程式の復習		***	

投業計世	授美計画						
		週	授業内容	週ごとの到達目標			
後期	3rdQ	1週	授業ガイダンス/Excelの基本操作の復習	本科目の目的を理解し、Excelの基本操作が説明できる			
		2週	2分法	2分法の意味とフローチャートが書け、Excelで計算で きる			
		3週	ニュートン法	ニュートン法のフローチャートが書け、Excelで計算で きる			
		4週	連立一次方程式の復習	連立一次方程式と行列との関係を説明できる			
		5週	ガウス・ジョルダン法について	ガウス・ジョルダン法のアルゴリズムを理解し、計算 できる			
		6週	ヤコビ法について	ヤコビ法のアルゴリズムを理解している			
		7週	中間試験	各自の理解力のレベルを確認する			
		8週	試験解説・復習	これまでの学習内容を復習する			
	4thQ	9週	関数補間とは	関数補間の一般的な考え方を説明できる			
		10週	ラグランジュの補間法	一次方程式、行列、ベクトルの復習をする			
		11週	最小二乗法	ガウス・ジョルダン法のアルゴリズムを理解している			
		12週	矩形法・台形法・シンプソン法	矩形法・台形法等により数値積分ができる			
		13週	常微分方程式の復習	常微分方程式の数値解法の考え方を理解している			
		14週	オイラー法による常微分方程式の解法	オイラー法による一階の常微分方程式が解ける			
		15週	オイラー法によるニュートン方程式の解法	力学系の問題が数値計算により解くことができる			
		16週					
評価割合							

課題・レポート

40

0

合計

100

0

試験

60

0

総合評価割合

基礎的能力

専門的能力	60	40	100
分野横断的能力	0	0	0