45.				↑ TROE (= 1	2022年序)	122714.171	######################################			
熊本高等専門学校 到日基礎標記		│ 開講年度 令和05年度 (2		(U23年度)	授業科目	電気磁気学II				
科目基礎	門育報	Tarri			Inter a					
科目番号		CI1403			科目区分	専門/必				
授業形態		授業	> 1 2450		単位の種別と単位数 学修単位: 2					
開設学科		1200000	システム工学科		対象学年 週時間数	1				
開設期		通年	++							
教科書/教	对	_ i	著「電磁気学[改訂	「版」初めて字ぶ人の	のために」 培風館					
担当教員		藤本 信−	- 民)							
到達目標										
2.基礎法則 3.様々な系 4.基礎法則	に基づいた の電磁気的 を用いてさ	を理解でき :論証を適切 な性質を調 まざまな系	る. に展開できる. べる際に適切な基礎 の電磁気的な性質を	法則を適用できる。 計算できる.						
ルーブリ	<u> ック</u>		理想的な到達レ	 ベルの目安	標準的な到達レベル	 ルの目安	 未到達レベルの目安			
アンペール	の法則		アンペールの法則を用いて、対称		アンペールの法則で性を持った回路による磁束密度を一般を		アンペールの法則を用いて、対称			
ビオ・サハ	ベールの法則	J	ビオ・サバールの法則を利用し、円 形電流のつくる静磁界や無限に長 いソレノイドのつくる静磁界を計		ビオ・サバールの 形電流のつくる静 いソレノイドのつ	法則を利用し, 滋界や無限に長	円 ビオ・サバールの法則について説			
			算できる. 磁界内の雷流に働くカ. アンペール		くつか計算できる. 磁界内の電流に働い	 くカ, アンペー,	リレ			
磁界が及ほ	ぼす力、変位	Z電流	の力についての ^は 用する力のモー: る。	の力についての埋解し, コイルに作 の力についての地 用する力のモーメントを計算でき 用する力のモーメ ス. できる.			作 磁界内の電流に働く力, アンペール の力について説明できない.			
			マクヘフェル 則を理解し、コン る変位電流を計算	・アンベールの法 ンデンサーに生じ 算できる.	マクスウェル・ 則を理解し, コン る変位電流を一部 ファラデーの電磁) 則について説明できない. 			
電磁誘導			ファラデーの電码 用問題が解ける.	滋誘導の法則の応	アファーの電磁: 用し、直線上の電約 場合に直線に平行 に誘導される電流: 計算できる。さらに 電磁誘導の法則のに つか解ける.	泉に交流が流れ な長方形の導線 および起電力を , ファラデーの	た ^泉 ファラデーの電磁誘導の法則につ _り いて説明できない.			
学科の到		 目との関	 么] DIS R+V) &.					
教育方法		KII C VIXI	1/15							
	寸	電磁气学	の甘木汁則 物理具	畑会を休刑さてて	道1オス 大利日に	ナンフトが生に	 焦点を絞り解説する. その際, 身近な			
概要		問題が具	の基本伝則, 物理里 体的数値を用いて,	, Music 体室立てて その物理的イメーシ	等人する. 本件日に ジを描き出す.	OVI CIAIXXXIII	- 焦点で減り解試する. での味, 身近な			
授業の進め	方・方法	きるかぎ	り簡単な数式を用い	て平易な説明を心た	がける. また時間の記	午す限り例題・				
注意点		間の目学	自習が求められる。	次数学、3年次電気	磁気学を理解してお	らくことが望まり	(クトル解析)を用いるので, 基礎電気学 しい. この科目では、1単位あたり15時			
		上の区分			T		T			
□ アクテ	ィブラーニ	ング	□ ICT 利用		☑ 遠隔授業対応		□ 実務経験のある教員による授業			
授業計画	Ī	1 1								
		週	授業内容			』ごとの到達目	票			
		1週	ガイダンス				は,評価の方法を理解する.			
前期	1stQ	2週	磁荷, 磁界, アンペ·	ールの法則	[5	電流間に働く力に関するアンペールの発見につ解し,磁荷,磁界,磁束密度について簡単に説明さらにアンペールの法則を用いて、対称性を持路に流れる電流のつくる磁束密度を計算できる				
		3週	磁荷, 磁界, アンペ・	ールの法則	[5	電流間に働く力に関するアンペールの発見につい解し,磁荷,磁界,磁束密度について簡単に説明で さらにアンペールの法則を用いて、対称性を持っ 路に流れる電流のつくる磁束密度を計算できる。				
		4週	磁荷, 磁界, アンペ・	統, 磁界, アンペールの法則			電流間に働く力に関するアンペールの発見について理解し、磁荷、磁界、磁束密度について簡単に説明できる. さらにアンペールの法則を用いて、対称性を持った回路に流れる電流のつくる磁束密度を計算できる。			
		5週	磁荷, 磁界, アンペ・	荷, 磁界, アンペールの法則			電流間に働く力に関するアンペールの発見について理解し、磁荷、磁界、磁束密度について簡単に説明できる. さらにアンペールの法則を用いて、対称性を持った回路に流れる電流のつくる磁束密度を計算できる。			
		6週	中間試験		1	1から5週までに学習した内容の理解を確認する試 実施する。				
		7週	答案返却、ビオ・サ	ナバールの法則	ビ 破	答案を返却し、ここまでの内容・理解度を振りビオ・サバールの法則を利用し, 円形電流のつ磁界や無限に長いソレノイドのつくる静磁界をきる.				
		8週	ビオ・サバールの泫	5則	ビ弦	ビオ・サバールの法則を利用し、円形電流の磁界や無限に長いソレノイドのつくる静磁界きる.				

		9週	ビオ・サバールの		去則		ビオ・サバールの法則を利用し,円形電流のつくる 磁界や無限に長いソレノイドのつくる静磁界を計算 きる.				のつくる静 界を計算で	
İ	2ndQ	10週	ビオ	ビオ・サバールの法則			ビオ・サバールの法則を利用し, 円形電流のつくる静 磁界や無限に長いソレノイドのつくる静磁界を計算で きる。					
		11週	磁界	 磁界内の電流に作用する力			磁界内の電流に働く力, アンペールの力についての理解し, コイルに作用する力のモーメントを計算できる.					
		12週	磁界	磁界内の電流に作用する力			磁界内の電流に働くカ、アンペールの力についての理解し、コイルに作用する力のモーメントを計算できる.					
		13週		-レンツカ			磁界内の電荷に働く し, 磁界中を運動す	(カ.ロー	レンツカ	につし	ハての理解	
		14週		ローレンツカ			磁界内の電荷に働く力, ローレンツ力についての理解 し, 磁界中を運動する電荷の起動を計算できる.					
		15週	期末	期末試験			1から15週までに学習した内容の理解を確認する試験を実施する。					
		16週	答案				答案を返却し、ここ	こまでの内	容・理解	弾度を	<u></u> 振り返る。	
		1週	磁性	磁性体内の静磁界			磁性体内の静磁界の基本法則について理解し、磁化率、 透磁率、常磁性体、強磁性体、反磁性体についての例題 が解ける.					
	3rdQ	2週	磁性	磁性体内の静磁界			磁性体内の静磁界の 透磁率, 常磁性体, が解ける.	D基本法則 強磁性体,	について 反磁性体	で理解本につ	し, 磁化率, いての例題	
		3週	磁性	磁性体内の静磁界			磁性体内の静磁界の基本法則について理解し、磁化率、 透磁率、常磁性体、強磁性体、反磁性体についての例題 が解ける.					
		4週	変位				アンペール・マクスウェルの法則を理解し, コンデン サーに生じる変位電流を計算できる.					
I		5週	変位	変位電流			アンペール・マクスウェルの法則を理解し、コンデンサーに生じる変位電流を計算できる.					
		6週	変位	江電流			アンペール・マクスサーに生じる変位電	スウェルの	法則を理	里解し	, コンデン	
後期		7週	中間	討験			1から6週までに学習した内容の理解を確認する試験を実施する。					
		8週	答案	答案返却、ファラデーの電磁誘導の法則			答案を返却し、ここまでの内容・理解度を振り返る。 線上の電線に交流が流れた場合に 電線に平行な長方形 の導線に誘導される電流および起電力を計算できる.					
		9週	ファ	プラデーの電磁	ファラデーの電磁誘導の法 の電磁誘導の法則を利用し れた場合に 電線に平行な 流および起電力を計算でき			を利用し,i 平行な長力	,直線上の電線に交流が流 長方形の導線に誘導される電			
		10週	ファ	[,] ラデーの電磁	誘導の法則		ファラデーの電磁誘導の法則を利用し,直線上の電 に交流が流れた場合に 電線に平行な長方形の導線に 導される電流および起電力を計算できる.			泉上の電線 の導線に誘		
	4thQ	11週	ファ	ラデーの電磁	誘導の法則 発生する起電力 発生する起電力 発生する起電力		ファラデーの電磁誘導の法則を利用し, 直線上の電線 に交流が流れた場合に 電線に平行な長方形の導線に誘 導される電流および起電力を計算できる.				泉上の電線 の導線に誘	
		12週	運動	する回路内に			ファラデーの電磁誘導の法則の応用問題が解ける.					
		13週	運動	する回路内に			ファラデーの電磁誘導の法則の応用問題が解ける. ファラデーの電磁誘導の法則の応用問題が解ける. 8週以降で学習した内容の理解を確認する試験を実施する。					
		14週	運動	する回路内に								
		15週	期末	:試験								
		16週	答案	逐步	<u>支</u> 却			答案を返却し、ここまでの内容・理解度を振り返る。				
モデルニ]アカリ	ノキュラ	ムの学習	図内容と到達	鞋目標							
分類		5.)野	学習内容	学習内容の到達目	票			到達レ	ベル	授業週	
					磁性体と磁化及び磁束密度を説明できる。				4		後1,後2,後 3	
					電流が作る磁界をビオ・サバールの法則を用いて計算できる。				4		前7,前8,前 9	
					電流が作る磁界をアンペールの法則を用いて計算できる。				4		前11,前 12,前13	
	分畔	別の専 電気・ 系分野	雪気・重之		磁界中の電流に作用する力を説明できる。				4		前11,前 12,前13	
専門的能力	7 育工		系分野 ^電 」		ローレンツ力を説明できる。				4		前14	
					磁気エネルギーを説明できる。				4		前11,前 12,前13 後12.後	
					電磁誘導を説明でき、誘導起電力を計算できる。				4		後12,後 13,後14 後12 後	
					自己誘導と相互誘導を説明できる。 自己インダクタンス及び相互インダクタンスを求めることができ			 とがで キ	4		後12,後 13,後14 後1,後2,後	
				1	る。	ベスし、旧ユコング	ファンスで水砂で		4		3	
評価割合		- -	Ţ.				1			A=1		
‰△ःπ/≖中		試験 70		<u>ンポート</u>	0	0	0	0		合計		
総合評価害 基礎的能力		70 40		.5	0	0	0	0		100 55		
空蜒凹肥力	، ا	T U	I	J	Įυ	Įυ	Įυ	U		133		

専門的能力	30	15	0	0	0	0	45
分野横断的能力	0	0	0	0	0	0	0