熊本高等専門学校		開講年度	令和02年度 (2	1020年度)	授業科目	電気回路学		
科目基礎情報								
科目番号	HI1301			科目区分	専門 / 必	修		
授業形態	授業			単位の種別と単位数	数 履修単位	: 2		
開設学科	人間情報シス	テム工学科		対象学年	3	3		
開設期	通年			週時間数	2	2		
教科書/教材 西巻正郎, 森武昭, 荒井俊彦「電気回路の基礎」森北出版								
担当教員 村上 純,小山 善文								
到達目標								

- ・直流回路,正弦波交流回路の回路方程式が立てられ,電圧・電流・インピーダンスの関係が説明できる. ・交流の電力,テブナンの定理等の定理などの概念を理解し,基本的な回路の計算ができる.

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
直流回路の解き方 Υ – Δ変換 直流ブリッジ回路 重ね合わせの理とテブナンの定理	・オームの法則とキルヒホッフの法則を用いて,直流回路の計算ができる。・ Y - Δ変換が理解でき,これを用いて回路の計算ができる。・ 直流ブリッジ回路の原理が理解でき,回路の計算ができる。・ 重ね合わせの理とテブナンの定理が理解でき,これらを用いて回路の計算ができる。	・オームの法則とキルヒホッフの法則を用いて,直流回路の基本的な計算ができる. ・Y - Δ変換が理解でき,これを用いて回路の基本的な計算ができる. ・直流ブリッジ回路の原理が理解でき,回路の基本的な計算ができる. ・重ね合わせの理とテブナンの定理が理解でき,これらを用いて回路の基本的な計算ができる.	・オームの法則とキルヒホッフの法則を用いた,直流回路の基本的な計算ができない。 ・Y - A変換を用いた,回路の基本的な計算ができない。 ・直流ブリッジ回路の原理を用いた基本的な計算ができない。 ・重ね合わせの理とテブナンの定理を用いた回路の基本的な計算ができない。
重ね合わせの理とテブナンの定理 正弦波交流 記号演算と複素数表示	・重ね合わせの理とテブナンの定理が理解でき、これらを用いて回路の計算ができる。 ・正弦波交流について、周波数や周期,位相などの概念、大きさの表し方が理解でき、計算ができる・・記号演算と複素数表示について理解し、瞬時値とベクトル表示の計算ができる・・	・重ね合わせの理とデブナンの定理が理解でき、これらを用いて回路の基本的な計算ができる。 ・正弦波交流について、周波数や周期,位相などの概念、大きさの表し方が理解でき、基本的な計算ができる。 ・記号演算と複素数表示について理解し、瞬時値とベクトル表示の基本的な計算ができる。	・重ね合わせの理とテブナンの定理を用いた回路の基本的な計算ができない。 ・正弦波交流について、周波数や周期,位相などの概念,大きさの表し方が理解できず、基本的な計算もできない。 ・記号演算と複素数表示に基づく、瞬時値とベクトル表示の基本的な計算ができない。
複素インピーダンス 交流回路の計算	・複素インピーダンスについて理解し、交流回路のインピーダンス計算ができる。 ・交流回路の電流や電圧の計算ができる。	・複素インピーダンスについて理解し、交流回路の基本的なインピーダンス計算ができる。 ・交流回路の電流や電圧の基本的な計算ができる。	・交流回路の基本的なインピーダンス計算ができない. ・交流回路の電流や電圧の基本的な計算ができない.
交流回路の計算交流の電力	・交流回路の電流や電圧の計算ができる. ・交流電力の概念を理解し,計算ができる.	・交流回路の電流や電圧の基本的な計算ができる. ・交流電力の概念を理解し,基本的な計算ができる.	・交流回路の電流や電圧の基本的な計算ができない。 ・交流電力の基本的な計算ができない。

学科の到達目標項目との関係

教育方法等

	直流回路では、1、2年次の基礎電気の復習を行った後、より複雑な回路網の分析方法について学ぶ、交流回路では、正弦波交流を複素ベクトルでとらえ直し、交流電力における有効電力などのより高度な回路現象の理論について学ぶ、
授業の進め方・方法	講義中は演習問題を解く時間を多く設け,理論的な理解を問題を解くことでより深めるよう進める.必要に応じて,グループワーク的な演習も実施する予定である.
注意点	本科目は、基礎電気学(1,2年)など、多くの電気系専門科目と関連している。1,2年での学習内容を十分に理解して受講することが望ましい、質問も随時受け付ける。本学科の専門基礎科目として習得すべき内容であるため、十分に理解することを目指してほしい、規定授業時数は60時間である。

授業計画

技夫 司 [5	븨			
		週	授業内容	週ごとの到達目標
		1週	実力確認	2年生までに学んだ直流回路の基本的計算ができる.
	1stQ	2週	直流回路の解き方	オームの法則とキルヒホッフの法則を用いて,直流回 路の計算ができる.
		3週	直流回路の解き方	オームの法則とキルヒホッフの法則を用いて,直流回 路の計算ができる.
		4週	直流回路の解き方	オームの法則とキルヒホッフの法則を用いて,直流回 路の計算ができる.
		5週	Y - Δ変換	Y - Δ変換が理解でき,これを用いて回路の計算がで きる.
益期		6週	直流ブリッジ回路	直流ブリッジ回路の原理が理解でき,回路の計算がで きる.
前期		7週	直流ブリッジ回路	直流ブリッジ回路の原理が理解でき,回路の計算がで きる.
		8週	中間試験	
	2ndQ	9週	答案返却、重ね合わせの理とテブナンの定理	重ね合わせの理とテブナンの定理が理解でき、これら を用いて回路の計算ができる.
		10週	重ね合わせの理とテブナンの定理	重ね合わせの理とテブナンの定理が理解でき,これら を用いて回路の計算ができる.
		11週	重ね合わせの理とテブナンの定理	重ね合わせの理とテブナンの定理が理解でき,これら を用いて回路の計算ができる.
		12週	正弦波交流	正弦波交流について,周波数や周期,位相などの概念 ,大きさの表し方が理解でき,計算ができる.

13週								正弦波交流につい	て, 周波数	や周期、仏	立相などの概念	
				記号演算と複素数表示			, 大きさの表し方が理解でき、計算ができる. 記号演算と複素数表示について理解し、瞬時値とベクトル表示の計算ができる.					
15週 定類			定期試験				トル衣示の計算が	<u> </u>				
	16週 答案返却											
		1週	Į į	复素~	インピーダンス	複素インピーダンスについて理解し,交流回路のイン ピーダンス計算ができる.						
		2週	Į į	复素~	インピーダンス	複素インピーダンスについて ピーダンス計算ができる.			理解し,交流回路のイン			
	3rdQ	3週	Į į	复素~	インピーダンス	複素インピーダンスについて ピーダンス計算ができる.			理解し,交流回路のイン			
	JiuQ	4週		4	国路の計算	交流回路の電流や電圧の計算				ができる.		
		5週			国路の計算			交流回路の電流や電				
		6週			国路の計算			交流回路の電流や電				
後期		7週			国路の計算			交流回路の電流や電	電圧の計算	ができる.		
12,743		8週		中間試験								
		9週							の電流や電圧の計算ができる.			
		10ì		217101	国路の計算			交流回路の電流や電流や電流				
		11ì		交流の電力 交流電力の概念を理解し、								
	4thQ	12ì		2.7.10	の電力 - = .			交流電力の概念を理解し、計算ができる.				
		13ì			の電力			交流電力の概念を理解し、計算ができる.				
		14ì			の電力	交流電力の概念を理解し, 計算ができる.			5.			
		15ì		定期記								
	-	16ì		<u> </u>								
	アカリー	トユ		子省	内容と到達		-			T-10+1	IEWA	
分類			分野			学習内容の到達目標					ル 授業週	
						電荷と電流、電圧を説明できる。				4	前1	
						オームの法則を説明し、電流・電圧・抵抗の計算ができる。			5	前1,前2,前3,前4		
						キルヒホッフの法則を用いて、直流回路の計算ができる。			5	前1,前2,前3,前4		
						合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。			4	前1,前2,前3,前4		
						ブリッジ回路を計算し、平衡条件を求められる。			3	前6,前7		
						正弦波交流の特徴を説明し、周波数や位相などを計算できる。			5	前12,前13		
 専門的能力	分野別の 門工学	の専	電気・電 系分野 			平均値と実効値を説明し、これらを計算できる。				3	後4,後5,後6,後7	
(31 32 3132)	川工士	门上子					-	正弦波交流のフェーザ表示を説明できる。			3	前14,前 15,前16
						R、L、C素子における正弦波電圧と電流の関係を説明できる。			3	後4,後5,後6,後7		
						合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。 			3	後8,後9,後		
						交流電力と力率を説明し、これらを計算できる。			3	後11,後 12,後13,後 14,後15,後 16		
			情報系分野			オームの法則、キルヒホッフの法則を利用し、直流回路の計算を 行うことができる。		4	前2,前3,前 4			
評価割合	<u> </u>					_		_				
	試	試験			ポート	態度 ポートフォリオ			その他合		計	
総合評価割合 70			30		0	0	0	0	1	.00		
基礎的能力 50			30	1	0	0	0	0		30		
	専門的能力 20		0		0	0	0	0	2	20		
分野横断的能力 0		0		0	0	0	0)			