熊本高等専門学校		開講年度	平成28年度 (2	016年度)	授美	業科目	材料力学	
科目基礎情報								
科目番号	0005			科目区分	専門 / 必修		修	
授業形態	授業		単位の種別と単位数		学修単位: 2			
開設学科	機械知能シス	テム工学科	対象学年	4	4			
開設期	通年			週時間数		1		
教科書/教材	「絵とき材料力学基礎のきそ」井山 裕文著 日刊工業新聞社および配布資料							
担当教員	教員 井山 裕文							

到達目標

- 1. 応力、ひずみ、フックの法則の概念を説明できる。
 2. 引張り、圧縮などの荷重や伸び、熱応力などの問題の解き方を理解できる。
 3. はりのせん断応力図および曲げモーメント図を求めることができる。
 4. はりのたわみを求めることができる。
 5. 軸のねじりの問題の考え方を理解できる。
 6. 組合せ応力、モールの応力円を理解できる。
 7. ひずみエネルギーによる解き方を理解できる。
 8. 座屈の概念、オイラーの公式を説明することができる。

ルーブリック

10 2 2 2 2			
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安(可)
応力、ひずみ、フックの法則の概 念を説明できる。	応力とひずみ、フックの法則の問題をよく理解し、幅広い問題に対して柔軟に対応でき、問題を解くことができる。	応力とひずみ、フックの法則の問題を理解でき、材料力学で紹介されるような演習問題を広く解くことができる。	応力とひずみ、フックの法則の問題を理解でき、授業で紹介されたような演習問題を解くことができる。
引張り、圧縮などの荷重や伸び、 熱応力などの問題の解き方を理解 できる。	引張り、圧縮などの荷重や伸び、 熱応力などの問題をよく理解し、 幅広い問題に対して柔軟に対応でき、問題を解くことができる。	引張り、圧縮などの荷重や伸び、 熱応力などの問題をよく理解し、 材料力学で紹介されるような演習 問題を広く解くことができる。	引張り、圧縮などの荷重や伸び、 熱応力などの問題をよく理解し、 授業で紹介されたような演習問題 を解くことができる。
はりのせん断応力図および曲げモ ーメント図を求めることができる 。	はりのせん断応力図および曲げモーメント図を描くことができ、幅 広い問題に対して柔軟に対応でき 、問題を解くことができる。	はりのせん断応力図および曲げモーメント図を描くことができ、材料力学で紹介されるような演習問題を解くことができる。	はりのせん断応力図および曲げモーメント図を描くことができ、授業で紹介されたような演習問題を解くことができる。
はりのたわみを求めることができ る。	はりのたわみ角およびたわみ式を 求めることができ、幅広い問題に 対して柔軟に対応でき、問題を解 くことができる。	はりのたわみ角およびたわみ式を 求めることができ、材料力学で紹 介されるような演習問題を解くこ とができる。	はりのたわみ角およびたわみ式を 求めることができ、授業で紹介さ れたような演習問題を解くことが できる。
軸のねじりの問題の考え方を理解できる。	軸のねじりの問題の考え方を理解 でき、幅広い問題に対して柔軟に 対応でき、問題を解くことができ る。	軸のねじりの問題の考え方を理解 でき、材料力学で紹介されるよう な演習問題を解くことができる。	軸のねじりの問題の考え方を理解でき、授業で紹介されたような演習問題を解くことができる。
組合せ応力、モールの応力円を理解できる。	組合せ応力、モールの応力円を理解でき、幅広い問題に対して柔軟に対応でき、問題を解くことができる。	組合せ応力、モールの応力円を理解でき、材料力学で紹介されるような演習問題を解くことができる。	組合せ応力、モールの応力円を理解でき、授業で紹介されたような 演習問題を解くことができる。
ひずみエネルギーの求め方を理解 できる。	ひずみエネルギーの求め方を理解でき、幅広い問題に対して柔軟に対応でき、問題を解くことができる。	ひずみエネルギーの求め方を理解 でき、材料力学で紹介されるよう な演習問題を解くことができる。	ひずみエネルギーの求め方を理解 でき、授業で紹介されたような演 習問題を解くことができる。
座屈の概念、オイラーの公式を理 解できる。	座屈の概念、オイラーの公式を理解し、、幅広い問題に対して柔軟に対応でき、問題を解くことができる。	座屈の概念、オイラーの公式を理解し、材料力学で紹介されるような演習問題を解くことができる。	座屈の概念、オイラーの公式を理解し、授業で紹介されたような演習問題を解くことができる。
\\\ \(\) = \(_		

学科の到達目標項目との関係

本科(準学士課程)での学習・教育到達目標 3-1 本科(準学士課程)での学習・教育到達目標 3-3

教育方法等

概要	材料力学は、機械や構造物が破壊されずに、安全に連用するにめの基礎となる学問である。そのにめ、機械系の学生や 技術者にとって必須科目となっている。「応力」や「ひずみ」等の概念や数式や理論と実際の現象の関連を学ぶ。
授業の進め方・方法	教科書を中心に進める。演習および応用課題は配布資料で行う。 材料力学の理論を実際に応用するための基礎固めを目標とする。 課題は欠かさず期日までに提出すること。
注意点	ノートは後で見て分かるように、文字および数字の大きさを揃え、余白を十分に取り、要点を意識してとること。1回の授業に対して、1時間程度の自学自習に取り組むこと。 授業を聴いて、理解できない内容は必ず質問すること。質問は随時受け付ける。 学外の資格試験、就職試験、大学編入試験等において、材料力学関連の問題は多く出題される。教科書や図書館にある問題集の各種問題をできるだけ多く自分で解く。

授業計画

刀天天可世	븨			
		週	授業内容	週ごとの到達目標
		1週	材料力学を学ぶことについて・必要な基礎知識	材料力学で必要な力学の基礎の内容、問題を解くための数学の知識について説明する。また、1年間の授業の進め方、試験およびレポートの説明を行う。
	2週	荷重と応力	荷重の種類、応力の種類について知る。	
前期	前期 1stQ	3週	応力とひずみ	応力とひずみの定義について理解する。
		4週	安全率	許容応力、基準強さについて説明し、安全率との関係 を理解できる。
	5週	棒の引張りと伸び	引張り荷重と断面積、棒の長さ、ひずみの関係から材 料の伸びを求めることができる。	

		6週	荷重。	ヒモーメント	・骨組構造	荷重とモーメントの関係を理解する。また、骨組み構造における各部材の応力、伸び、節点の変位を求めることができる。				
		7週	熱応力			熱ひずみによる、部材の圧縮、引張り応力を求めることができ、部材全体の伸びを求めることができる。				
		8週	前期中	中間試験						
		9週	はりの	の種類と支持だ		梁(はり)の種類、その支持 いて理解する。	方法、荷重の	作用点につ		
		10週	せんど	断力と曲げモ-	-メント	はりに生じる、せん断力と曲げモーメントの求め方に ついて理解でき、せん断力図、曲げモーメント図を描 くことができる。				
		11週	はりの曲げ応力			はりの曲げ応力について求め	ることができ	る。		
	2ndQ	12週				断面二次モーメント、断面係 の断面形状からそれぞれを求				
		13週				はりのたわみを例題を通して	理解できる。			
		14週	はりのたわみ(2)			はりのたわみを例題を通して 解いてみる。	理解できる。	演習問題を		
		15週	前期に	定期試験		これまで学習してきた、成果 解し、解答する。	として、問題	の内容を理		
		16週	前期定期験の返却と解説			試験評価の確認、内容の解説を理解できる。				
		1週	軸のネ	a じり		軸に作用するねじりモーメントについて理解できる。 断面二次極モーメントについて理解できる。				
		2週	中実	九軸と中空丸	はのわぶり	中実丸軸、中空丸軸の違いについて理解し、それぞれ				
		3週	応力で	とひずみの関係		のねじり問題を解く。 一般化された応力とひずみの関係式を理解できる。				
		4週	平面		ボ み	平面応力と平面ひずみの違い				
	3rdQ	5週	±!	 レの応力円		た演習問題を解く。 モールの応力円とは何かを知り、例題により理解する				
						。 薄肉円管と薄肉球について、内圧が作用す		ころときの.		
		6週	溥冈ト	円管と薄肉球	J	応力を求めることができる。				
		7週	演習	問題		これまでの内容に関する課題レポートについて説明し 、その内容を解くことができる。				
後期		8週	後期中間試験			カガンエネリ <i>ギ</i> ーレル <i></i> あか	ナたっかづわ	のだ手かタ		
152,741		9週	ひずみエネルギー		(1)	ひずみエネルギーとは何か、またそれぞれの荷重や条件によるひずみエネルギーを解くことができる。				
		10週	ひずみエネルギー			衝撃荷重によるひずみエネル 求めることができる。	ギー、棒の伸	び、応力を		
		11週	カスラ	ティリアーノの	D定理	カスティリアーノの定理について説明し、この定理を 利用した例題を解くことができる。				
		12週	不静深	 主ばりの問題	;	不静定ばりとは何か、またそ ィリアーノの定理を用いて解	のはりのたれ	みをカステ		
	4thQ		柱の座屈問題		J	座屈とは何か、柱の座屈問題	について、端	部の条件の		
		13週	柱の風	平屈問題	,	違いによる座屈荷重、座屈応力を求めることができる 。				
		14週	演習問	習問題		これまでの内容に関する課題レポートについて説明し 、その内容を解くことができる。				
		15週	後期定期試験			試験評価の確認、内容の解説を理解できる。				
T-"II -		16週 - = = 1	1	定期試験の返却と解説 3内容と到達目標						
<u>モナル</u> 分類	アカワキ	<u>-ユ ノムの</u> 分野	ナ 百	学習内容	 学習内容の到達目標		到達レベル	授業週		
					力は、大きさ、向き、作用する点によ 、適用できる。	よって表されることを理解し	4			
					一点に作用する力の合成と分解を図で表現でき、合力と分力を記		4			
					算できる。 一点に作用する力のつりあい条件を説明できる。		4			
					力のモーメントの意味を理解し、計算		4			
					偶力の意味を理解し、偶力のモーメン	ントを計算できる。	4			
					着力点が異なる力のつりあい条件を説明できる。		4			
				力学	重心の意味を理解し、平板および立体の重心位置を計算できる。		4			
専門的能力	分野別 <i>0</i> . 門工学)専 機械系	分野		荷重が作用した時の材料の変形を説明できる。		4			
	□□工子		NS(1/1621(7)] ±]		応力とひずみを説明できる。 フックの法則を理解し、弾性係数を説明できる。		4			
					プックの法則を理解し、弾性係数を説明できる。 応力-ひずみ線図を説明できる。		4			
					許容応力と安全率を説明できる。		4			
					断面が変化する棒について、応力と伸びを計算できる。		4			
					棒の自重よって生じる応力とひずみを計算できる。		4			
					両端固定棒や組合せ棒などの不静定問題について、応力を計算で きる。		4			
					線膨張係数の意味を理解し、熱応力を計算できる。		4			
					ねじりを受ける丸棒のせん断ひずみとせん断応力を計算できる。		4			

		丸棒および中空丸棒 数を計算できる。	奉について、断面二次極モーメントと	極断面係	4	
		軸のねじり剛性の意	意味を理解し、軸のねじれ角を計算で	きる。	4	
		はりの定義や種類、	はりに加わる荷重の種類を説明でき	る。	4	
		はりに作用する力の 計算できる。	かつりあい、せん断力および曲げモー	メントを	4	
		各種の荷重が作用で を作成できる。	するはりのせん断力線図と曲げモーメ	ント線図	4	
		曲げモーメントに。 きる。	よって生じる曲げ応力およびその分布	を計算で	4	
		各種断面の図心、断曲げの問題に適用で	4			
		各種のはりについて、たわみ角とたわみを計算できる。			4	
		多軸応力の意味を説明できる。			4	
		二軸応力について、任意の斜面上に作用する応力、主応力と主せ ん断応力をモールの応力円を用いて計算できる。			4	
		部材が引張や圧縮を	4			
			部材が曲げやねじりを受ける場合のひずみエネルギーを計算できる。			
		カスティリアノのほきる。	官理を理解し、不静定はりの問題など	に適用で	4	
評価割合	_					
	試験		課題レポート 合計			
総合評価割合	80		20 100		-	
基礎的能力	50		15 65			
応用的能力 30			5 35			