熊本高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	機械設計製図I			
科目基礎情報									
科目番号	0052			科目区分	専門 / 必	修			
授業形態	演習	演習			数 履修単位	: 2			
開設学科	機械知能シス	機械知能システム工学科			3				
開設期	通年				2				
教科書/教材 配布資料(電子データ)									
担当教員 井山 裕文									
到達目標									
1. 3次元モデリングの基礎を理解し、空間的にイメージでき、図面の作成ができる。									

- 2. 簡単な3次元モデルのモデリングを通じて,3DCADの基本操作を行うことができる.3. スケッチから3DCADにより部品のモデリングおよび部品のアセンブリングができる.4. 3次元モデルを通じて,CAE(数値解析)の操作を行うことができる.

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1		3次元モデリングの図面を描くこと ができる.	3次元モデリングの基礎が理解できず,図面を描くことができない.
評価項目2	簡単な3次元モデルのモデリングを 通じて、3DCADの基本操作を行う ことができる.	3D-CADの基本操作を行うことが できる.	3D-CADの基本操作を行うことが できない.
評価項目3		3次元モデリングから C A E 解析を 行うことができる.	3次元モデリングから C A E 解析ができない.

学科の到達目標項目との関係

学習・教育到達度目標 2-1 学習・教育到達度目標 3-3

教育方法等

概要	本科目では、実際の製品設計での方法論の理解と習得を目指す. 具体的には、機械製品の3次元モデリング演習を行う . 本校のカリキュラムでは、社会の要求に応じて問題解決の方法を企画し、デザインするための総合科目と位置付けられた科目である.
授業の進め方・方法	本演習は,3次元モデリングの学習修得のために,製図基礎の応用と機構等の理解力および3DCADの基本操作の修得を目指す.さらに,3D-CADによるモデリング演習および3D-CADの応用操作の修得を目指し,現在主流になりつつある3D-CADによるモノづくりの方法論を習得を目標とする.
注意点	与えられた課題に対して積極的に自分で考えて取り組むこと. 提出期限までに必ず課題を提出するように心掛けること.

拉茶計型

授業計	画			
		週	授業内容	週ごとの到達目標
		1週	ガイダンス	科目の概要を理解する. なぜ学ぶのかを理解する.
授業計 前期		2週	3D-CADの基本操作1	これまでの復習も兼ねて基本的な操作ができる。
		3週	3D-CADの基本操作2	平面、曲面を有する3Dモデリングが作成できる。
		4週	3D-CADの基本操作3	より複雑な3Dモデリングと、材質の指定を行うこと ができる。
	1stQ	5週	3D-CADの基本操作4	3Dモデンリング後、質量、重心の位置を求めることができる。
		6週	演習課題1-①	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		7週	演習課題1-②	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		8週	演習課題2-①	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
前期		9週	演習課題2-②	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		10週	演習課題3	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
	2ndQ	11週	演習課題4	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		12週	演習課題5	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		13週	演習課題6	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		14週	演習課題7	与えられた課題の3Dモデリング、質量、重心の位置 を求めることができる。
		15週	小テスト	演習課題1〜演習問題7の内容を理解しているか小テストで確認する。
		16週		
		1週	CAE解析の概要	CAEとは何か、その概要を理解できる。
		2週	CAE解析の基本操作	3D-CADシステムへのCAEツールのアドインができ、 基本操作を学習する。
後期	3rdQ	3週	CAE解析演習1-① 構造解析	CAEを用いて,構造解析を行うことができる.
		4週	CAE解析演習1-② 構造解析	CAEを用いて、はりのたわみを求めることができる。

1			1								
		5週		解析演習2-① ンブリの構造				CAEを用いて,ア 、荷重の条件を理	'センブリモ !解できる.	デルの作成。	と固定の条件
		5週	CAE解析演習2-② アセンブリの構造解析				CAEを用いて、アセンブリモデルの構造解析を行うことができる。				
		7週	CAE	解析演習3-① シブリの構造				CAEを用いて、固有振動数を解析するにあたりその基本概念を理解できる。			
	Ī	3週	CAE解析演習4-① 流体解析				CAEを用いて、流体解析のためのモデリングができ、				
		 9週	CAE解析演習4-② 流体解析				各条件設定ができる。 CAEを用いて、流体解析ができ、その結果をまとめる ことができる。				
	İ	 10週		針/// 解析演習5		—————————————————————————————————————	解析	CAEを用いて,簡	単なエンジ	ン周辺の熱流	
		 11週		 寅習問題1 み解析		************************************					理論値との
		 12週	CAE	寅習問題2			固	与えられた課題の	3 Dモデリ	ングができ,	
2	lthQ _	13週		寅習問題3-①			熱流	をCAEにより求め 与えられたアセン	<i>゚</i> ブリモデリ	 ングにおい ⁻	て,熱流体解
		<i></i> 14週	CAE	解析その1析の条件設定ができ、計算モAE演習問題3-②熱流熱流体解析において、各自で							
	-	15週		,			期限内に課題を仕	し,その詳細を説明できる. 期限内に課題を仕上げ,締め切りを厳守することがで			
		 16週	BA AZZ			きる.					
 モデルコ ⁻				内容と到達	*************************************			•			
<u></u>	, , <u>, ,, , , , , , , , , , , , , , , , </u>	分野	<u> </u>	学習内容	学習内容の到達	:日煙				到達レベル	授業调
<u>// XX</u>		77 23		THU			ξ			3	以未起
					図面の役割と種類を適用できる。					4	
					製図用具を正しく使うことができる。					1	
					線の種類と用途を説明できる。					3	
					物体の投影図を正確にかくことができる。					3	
				製図	製作図の書き方を理解し、製作図を作成することができる。				3		
					公差と表面性状の意味を理解し、図示することができる。				る。	3	
					部品のスケッチ図を書くことができる。					3	
					CADシステムの役割と基本機能を理解し、利用できる。				3		
					ボルト・ナット、軸継手、軸受、歯車などの機械要素の図面を作成できる。				3		
					標準規格の意義を説明できる。					2	
					許容応力、安全率、疲労破壊、応力集中の意味を説明できる。				できる。	2	
					標準規格を機械設計に適用できる。					2	
		=			ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用できる。				解し、適用	2	
専門的能力	分野別の 門工学	* 機械系	经分野		ボルト・ナット結合における締め付けトルクを計算できる。				=====================================	2	
					ボルトに作用するせん断応力、接触面圧を計算できる。				2		
					軸の種類と用途を理解し、適用できる。				•	2	1
					軸の強度、変形、危険速度を計算できる。					2	
				l	神の風度、変形、心陝迷度を計算できる。 キーの強度を計算できる。					2	
				機械設計	キーの強度を計算とさる。 軸継手の種類と用途を理解し、適用できる。					2	1
					判職を子の権規と用途を注解し、適用とさる。 滑り軸受の構造と種類を説明できる。					t	+
										2	+
					転がり軸受の構造、種類、寿命を説明できる。 歯車の種類、各部の名称、歯型曲線、歯の大きさの表し方を説明				 し方を説明	_	
					西半の程規、各部の名称、国空曲線、国の八ささの衣しがを読明してきる。				ᄼᄼᅩᅩᆫᆔᄞ	2	
					すべり率、歯の切下げ、かみあい率を説明できる。					2	
					標準平歯車と転位歯車の違いを説明できる。					2	
					標準平歯車について、歯の曲げ強さおよび歯面強さを計算できる				2		
					•				 		
					歯車列の速度伝	達比を計算でき	<u>きる。</u>			2	
評価割合											
	試験		課		相互評価	態度		ポートフォリオ	その他	合語	<u> </u>
総合評価割る			80		0	0		0	0	10	
基礎的能力	20		80		0	0		0	0	10	
			0	0		0	0	0	-		
専門的能力	111								10		
専門的能力			0		0	0		0	0	0	