能力	本高等専	.門学	 校	開講年度	平成28年度 (2	2016年度)	授業	科目	 電気工学	 演習		
				1/13113 1/2		1,2)	3221		<u> </u>	<u>// </u>		
科目番号 0021			21			科目区分 専門 / 選技		門 / 選折				
授業形態		演習				単位の種別と単位						
開設学科		建筑	いません 単社会デ	ザイン工学科		対象学年	5	5				
開設期		後期	———— 朝			週時間数	1					
教科書/教材 電験三種教育研				育研究会編「平原	ップ問題集」実教出版 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
担当教員		入江	工 博樹									
到達目標	:											
2. □正弦 3. □直列	波交流をこ 共振回路の	フェー! り共振原	ザ表示や 周波数を	、回路網について 複素数表示で表す 計算ができる。 電力の計算ができ	ての計算ができる。 すことができる.実 きる	効値と平均値の計	算ができる	5.				
ルーブリ	ック											
				理想的な到達レベルの目安		標準的な到達レベルの目安			未到達レベルの目安			
電気回路の計算に適切な数学を利 用することができる。				として表現し、	をインピーダンス 電気回路に流れる くことができる。			三角関数、微積分,複素数などを 電気回路の解法に利用できない。				
キルヒホッフの法則を使って、回 路網についての計算ができる					式求め、回路に流 演算により求める	電気回路の回路網からキルヒホッ フの電流則と電圧則から必要な方 程式を立式することができる。			電気回路図の記号の意味が分からない。電気回路図を描くことができない。オームの法則に従った電流電圧の向きを描くことができない。			
正弦波交流をフェーザ表示や複素 数表示で表すことができる.実効 値と平均値の計算ができる。				合成インピーダ すことができる 	-	RLC回路をjωを使って、等価回路 として書き直すことができる。実 効値と平均値を計算することがで きる。			正弦波交流からフェーザ表示に直 すことができない。複素表示と極 表示の変換が出来ない。			
直列共振回路の共振周波数を計算 ができる				設計することが	適切なRLC回路を できる。周波数特 示すことができる		共振現象の物理的な意味を理解し 共振周波数を計算することがで ぎる。			RLC回路における共振の物理的な 意味を説明できない。		
3相交流の特徴を理解し、電流や電力等の計算ができる				Y-Δ変換変換を表 に流れる電流を 電力を有効、無 算できる。	利用して、での負荷 計算し、3相交流の 効、皮相電力で計	三相交流において、電源と負荷が Y-Y (またはΔ-Δ) 結線図を描き 、線間電圧、相電圧、などを求め ることができる。			3相交流の結線図からY-∆変換することが出来ない。			
学科の到	達目標項	目と	の関係			•			•			
本科到達目	標 2-2											
教育方法	等											
概要		としに領	して必須(簡単な確 受業を受	の条件である。4 認問題を出題する ける前 <i>に、</i> 教科書	!やノートに日を通る	交流の電気回路に すなどの予習を必	ついての基 ず行うこと	基礎的事項 	夏の習得を目	を有すること 目的とする. 	は,技術者 講義の最初	
授業の進め方・方法 ・ 授業後の ・ 授業中は			授業後の 授業中は	が早いうちに、ノートに目を通し、疑問点などを次の授業までにまとめておくこと。 は、教師の話しに集中、後から思い起こすために必要な項目をノートに記録してゆく 前の復習では、断片的な情報をまとまった知識として整理する。								
注意点		本技	受業では	様々な電気回路と	と電子回路の概要にで 回路を利用する上での	ーーー ついて実例を交え の基礎的か表義を	 ながら概説 身につける	 さする。 教	女科書の例記	題や章末問題	 の演習など	
₩₩₩		ارحا	囲して、	电对凹陷区电丁四	当時で利用する上で	ル <u> </u>	夕につける	0.				
授業計画		\E	1777	**			\H = \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
		週		授業内容 抵抗回路、直流と交流、電気で使う数		学的知識	週ごとの至	<u>到连日標</u>				
	3rdQ	1		汎凹路、恒流と交流、電気で使う数字的知識 LC回路素子とその性質								
		3週			ツル貝							
				旅波のフェーザ表示、実効値、平均値								
				カ、有効電力、皮相電力								
		6週		マインダクタンス、変成器、変圧回路(1)								
		7週		互インダクタンス、変成器、変圧回路(2)								
		8週		中間試験〕								
後期	4thQ	9週		スト返却とその[)回答							
				路網の解析法(1)合成インピーダンス、キルヒホッフ								
		10週	の	法則								
				路網の解析法(2)ブリッジ回路の解法								
		12週		路網の解析法(3)共振回路								
				相交流回路(1) Y-Δ変換								
				相交流回路(2) 相電圧、線間電圧、電力 後期受任主試験)								
				後期学年末試験〕 年末試験の返却と解説								
T-"::-		16週 										
	アカリキ			習内容と到達						70.±1 ···	1223年7日	
分類		5	分野	学習内容	学習内容の到達目標	甘士がか	はんたち	ニコフレボ	到達レベル	授業週		
基礎的能力 自然科学 物理実験				策 物理実験	測定機器などの取りできる。 安全を確保して、乳			、採作を行	ゴラごとか	1		
						ヘッハヒコンここが	د د ای			-	I .	

			実験報告書を決め	1						
			有効数字を考慮し	2						
	電磁気に関する分野に関する実験に基づき、代表的な物理現象 説明できる。									
	電子・原子に関する分野に関する実験に基づき、代表的な物 象を説明できる。					な物理現	3			
評価割合										
	試験	レポート	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合	80	20	0	0	0	0	100			
基礎的能力	60	10	0	0	0	0	70			
専門的能力 20		10	0	0	0	0	30			
分野横断的能力	0	0	0	0	0	0	0			