熊	本高等専	 評門学校	開講年度 令和06年度 (2	2024年度)	授業科目	応用生物化学							
科目基礎			(-	/		· · · · · · · · · · · · · · · · · · ·							
科目番号		0008		科目区分	専門/選	択							
授業形態		授業		単位の種別と単位	位数学修単位	: 2							
開設学科		生産シス	テム工学専攻	対象学年	専1								
開設期		前期		週時間数	Σ 2								
プリントを 教科書/教材 デービッド			配布する。参考書:「レーニンジャーの新生化学 :Lネルソン(著) 廣川書店,「概説 生物化学 学同人,「わかりやすい生化学」 林 寛 編著		・下 第6版」 島原健三著 三共 共出版,「生物科	アルバート L レーニンジャー (著), 出版, 「ヴォート生化学」 田宮信雄 :入門」 岡山繁樹著 培風館							
担当教員	⊒当教員 元木 純也,竹部 洋平												
到達目標													
1. 生体原2 代謝の	成分の構造。 の分子機構	とその異常と	学的性質を習得する なる原因を理解する 物質とシグナル伝達を理解する 践的応用のための科学リテラシーを身	につける									
ルーブリ	ノック			_									
			理想的な到達レベルの目安	未到達レベルの目安									
評価項目1 生体成分の 性質		れらの化学的	タンパク質・脂質・糖質・核酸の 構造・化学的性質およびそれらの 構造解析法について明瞭に理解し 、言葉でわかりやすく説明できる	構造・化学的性質	質・糖質・核酸の 質について明確に わかりやすく説明	タンパク質・脂質・糖質・核酸の 構造・化学的性質およびそれらの 構造解析法について理解できない 。							
評価項目2 異常となる	2 代謝の分- る原因を理解	子機構とその 解する	代謝の分子機構とその異常となる 原因について理解し、明確に説明 できる。	代謝の分子機構原因について理解	とその異常となる 解し、説明できる	代謝の分子機構とその異常となる 原因について理解し、説明できな い。							
評価項目3 生命の営みに必要な生理活性分子とシグナル伝達を理解する				生理活性分子といて理解し、説	シグナル伝達につ 明できる。	生理活性分子とシグナル伝達につ いて理解し、説明できない。							
し、実践的		の本質を理解 めの科学リテ			を理解し、実践的 ることができる。	生命現象の本質を理解し、実践的 応用例を説明することができない。							
	別達目標工 育到達度目標	頁目との関 標 3-3	 係										
教育方法													
概要	• •	現代の自	然科学領域において、生物化学が関係 要とする生体分子の構造と相互作用、	 する分野は一層広 代謝 - 反広を理解	範囲なものとなっ	てきた。生物が生命活動を維持する ・子論的が理解を深める							
本講義は、 解説する。 授業の進め方・方法 義する。 学リテラシ			配付資料を中心に授業を進める。生体分子の構造と反応性を整理しながら、これに基づく生命現象について 本科5年までに習った内容を基本として、それら成分の相互関係や近年明らかにされた生命現象も交えて講 受業では生化学の反応に基づいた疾患を取り上げ、生化学の知識を使用し、発症原因や結論を考えることで科 シーを養う。また、分子シミュレーションソフトウェアを用いて、ホモロジーモデリングとドッキングシミュ ンを行う。										
注意点		* 各成分 * わから	の分子構造に関することを予習し、1 ないことや疑問に思うことは自ら調べ	回毎の講義で前回 、また、質問に来	講義で前回講義の内容を質問するので復習しておくこと。 質問に来てほしい。質問はいつでも受け付けます。								
授業の原	属性・履何	多上の区分											
□ アクテ	-ィブラーニ	ニング	□ ICT 利用	☑ 遠隔授業対応	2	□ 実務経験のある教員による授業							
	 5ī												
1又未可四	4	週	100 W - 1- 150										
			授業内容		週ごとの到達目標	•							
前期	1stQ	2週	応用生物化学序論 糖質の代謝 (1)		応用生物化学についてのガイダンス 単糖、オリゴ糖、多糖の構造と化学的性質につい解し、体内に取り入れられた糖質の行方と糖質代概要を説明できる。								
		3週	 糖質の代謝(2)			<u>。</u> 疾病について理解し、説明できる。							
		4週	脂質の代謝(1)		がリセリドと脂肪酸の異化について理解し、説明できる。 る。								
		5週	脂質の代謝(2)		脂肪酸、グリセリドおよびリン脂質の生合成、また脂質代謝の異常と疾病について理解し、説明できる。								
		6週	アミノ酸の代謝(1)		て理解し、説明で	ミノ酸の構造、機能、代謝および臓器特異性につい 理解し、説明できる。							
		7週	アミノ酸の代謝(2)		アミノ酸代謝の異常と疾病について理解し、説明できる。								
	2ndQ	8週	核酸とタンパク質の代謝(1)		核酸の代謝の概要、遺伝情報の伝達と発現について理解し、説明できる。 突然変異と遺伝子操作について理解し、変異原性試験								
		9週	核酸とタンパク質の代謝(2)		やゲノム編集など関連技術の概要を説明できる。								
		10週	代謝の分子機構(1)		解糖と脂質酸化、アミノ酸の異化に関与する補酵素と ビタミンについて構造と機能、互いの関連について理解する。								
		11週	代謝の分子機構 (2)		補酵素を含む補助因子を要求する酵素を例として、触媒反応を理解する。								
		12週	生体における細胞間の情報伝達(1)		受容体の分子認識とシグナル伝達機構を理解し、バイオシグナリングを説明できる。 生体内の化学統制の例を理解し、薬剤の分子設計につ								
		13週	生体における細胞間の情報伝達(2)		生体内の化学統制の例を理解し、業剤の分子設計にフ いて例をあげて説明できる。								

	14週	生体防御			異物代謝酵素の構造のででである。	造と機能、	またその代	謝的活性化に					
	15週	後期末試験											
	16週	期末試験の返却と角	军説										
モデルコアカリキュラムの学習内容と到達目標													
分類 分野		学習内容	学習内容の到達目標				到達レベル	. 授業週					
評価割合													
	試験	課題	相互評価	態度	ポートフォリオ	その他	合	†					
総合評価割合 80		20	0	0	0	0	100						
基礎的能力 20		0	0	0	0	0	20						
専門的能力 50		20	0	0	0	0	70						
分野横断的能力	10	0	0	0	0	0	10						