Í	熊本高等專	∮門学校	開講年度 平成31年度 (2	2019年度)	授	業科目	物性工学		
科目基	礎情報								
科目番号	<u>1</u>	0026		科目区分 専		専門/選			
授業形態	Ŕ	授業		単位の種別と単	単位の種別と単位数 学修単位		: 2		
開設学科	1	生産シス	テム工学専攻	 		専1			
開設期		前期		週時間数 2		_			
教科書/勃		「固体物理	 理学-工学のために-」 岡崎 誠	著一卷					
担当教員		木場 信一							
到達目		,							
1. 結晶 2. 格子振 3. 波数	構造と波数/ 長動における ベクトルを(る調和振動の問 使って自由電子)対応が説明できる。 題からフォノンまでを説明できる。 ペモデル及びバンド構造を説明できる。 こついて説明できる。	>					
ルーブ	リック								
			理想的な到達レベルの目安	標準的な到達レベルの目安			未到達レベルの目安		
結晶構造 応が説明		トル空間の対	1979型は、佐笛丁の生間でひらに の周期性、逆格・		ついて、結晶構造 子の理論をもとに が示す物理的意味 きる		結晶構造解析について、結晶構造 の周期性,逆格子の理論を説明で きない		
	かにおける調 ・ノンまでを	和振動の問題 説明できる	調和振動の問題からフォノンまでの理論と物理的な意味を説明できる	格子振動における調和振動の問から,格子振動のモードについ 説明できる		振動の問題 ドについて	格子振動における調和振動について説明できない		
 波数ベク デル及ひ	7トルを使っ バンド構造	て自由電子モ を説明できる	自由電子モデル及びバンド構造の 物理的な意味, 理論について図式 を用いて説明できる	自由電子モデル及びバンド構造の物理的な意味について説明できる		ンド構造の 説明できる	自由電子モデルの物理的な意味に ついて説明できない		
超伝導体いて説明		現象の例につ	超伝導体が示す量子現象について 、基礎方程式を基礎にして測定結 果と対比しながら図式を用いて説 明することができる	超伝導の基礎方程式と電磁気的現象について、図式を用いて説明することができる		電磁気的現 いて説明す	. 超伝導体が示す電磁気的現象について、図式を用いて説明することができない		
<u></u> 学科の	到達日標:	項目との関ク	·····································	•					
^{学習・教} JABEE(教育方		標 3-1							
概要 集積プロ の要素と			よ、企業でCMOSテクノロジーによる大規模集積回路の開発,設計を担当していた教員が設計者として従事した、 ロセス工程開発等のデバイス技術の経験を活かして、半導体、超伝導体及びその機能素子に関する先端デバイス としての固体の物性がどのように応用に関連ずけられるか、半導体,超伝導体等を例に、その機能・応用の理解 3基礎学力の養成を目標として、講義形式で授業を行う。						
最初に、いて、ご 授業の進め方・方法 はいて、ご す。次に			国体を構成するにはどのような力が必要であるかを、微視的な観点から述べる。次に固体を形成する原子につ L 次元格子系の問題を扱い、周期的境界条件を適用することによって、格子振動の問題が簡単に解けることを示 こ固体内の電子の状態を表すために、波数とエネルギーの関係から、バンド構造について述べる。次に半導体 事現象について、これが量子力学的効果により発現する現象であることを述べる。						
注意点		ワークに	関する報告について30%、講義の内 実施する場合は、レポート、試験によ	容に関する学力試	<u> </u>	0%で到達			
授業計	画	1. 52-450 (2)		- , 1-0		,			
<u> 木口</u>		週			海ブレ	 の到達目			
		1 1	_{技集内各} 固体物理と工学応用に関する概要			素 芯用に関する例について説明できる。			
			□体初理と1子心用に関する概 <u>要</u> 物質と結晶構造						
					+				
前期			結晶構造と周期性 ニニー た数とは見様洗留だ				生をベクトル空間で説明できる。 四できる		
	1stQ		ミラー指数と結晶構造解析	ミラー指数を説明できる。					
	Tard		X線回折による測定法		結晶構造の測定法について、原理を説明できる。				
			逆格子と格子点			格子点との対応を説明できる。			
		7週 :	波数ベクトルと逆格子		結晶構造と波数ベクトル空間の対応が説明できる。				
		8週	調和振動子		調和振動の解を得て、格子振動のエネルギー特性について説明できる。				
		9週 ;	格子振動の数表示		格子振動における調和振動の問題からフォノンまでを 説明できる。				
		10週	自由電子モデルとバンド構造		波数ベクトルを使って自由電子モデル及びバンド構造を説明できる。				
		11週	電子・フォノン相互作用			電子・フォノン相互作用のダイヤグラムについて説明 できる。			
	2ndQ	12週	超伝導の量子的扱い			超伝導現象の量子現象について説明できる。			
		H	型伝導体の量子現象(磁束量子) ででである。			超伝導体の持つ量子現象の例について説明できる。			
		H	超伝導体の量子現象(ジョセフソン現	超伝導体の持つ量子現象の例について説明できる。					
		F		u>a\/	尼山特	トトナマンコダンミ	キュッシュマングラ しょうしょう しゅう		
			前期定期試験						
	<u>ー</u> コマナ!!		前期定期試験の返却とまとめ						
	コアカリ:		学習内容と到達目標						
)類 亚倫宝山		分野	学習内容 学習内容の到達目	標			到達レベル 授業週		

相互評価

態度

0

ポートフォリオ

その他

0

レポート

20

試験

80

評価割合

総合評価割合

合計

100

基礎的能力	0	0	0	0	0	0	0
専門的能力	80	20	0	0	0	0	100
分野横断的能力	0	0	0	0	0	0	0