熊本高等専門学校		開講年度	平成31年度 (2019年度)		授業科目	建設情報処理		
科目基礎情報								
科目番号	0116			科目区分	専門/選	専門/選択		
授業形態	授業			単位の種別と単位数	学修単位	学修単位: 2		
開設学科	生産システム工学専攻			対象学年 専2				
開設期	後期			週時間数	詩間数 2			
教科書/教材								
担当教員	入江 博樹							
지수 다 4편								

|到達目標|

- 1. 計算ツールとしてのコンピュータソフトウェアの取り扱いやOSやネットワーク設定の利用知識を身についたことを確認する。
 2. 画像処理により 3 DモデルをSfM/MVSにより作成できる。
 3. SfM/MVSの技術の概要を説明できる。
 4. ドローンの技術概要を説明できる。
 5. GNSS測位演算の基礎を理解し、その仕組みと誤差要因について説明できる。
 2. 2 周波GNSS受信機からのデータを利用して、RTK-GNSS測量により精密な位置を求めることができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安	
自分が利用するコンピュータを確認し、必要に応じて設定ができる	任意PCを指定されたネットワーク に接続し、必要に応じてソフトウ ェアの設定ができる。	指定されたパソコンを利用して、 授業で指定されたソフトウェアが 動作するかを確認できる。しかる べき者へ状態を報告できる。	自分の使用するパソコンの利用設 定が適切な状態かを確認できない 。	
GNSS技術について	各種GNSS測量方法の原理について 説明でき、RTKlibを用いて実際の データを処理することができる。	GNSS測量の原理を説明でき、 GNSSの誤差要因について説明でき る。	GNSSの仕組みや誤差の要因いついて説明できない。	
与えられた測位データからRTK-GNSSに関して、必要な情報をえることができる	GNSS受信機を自ら操作して、指定された場所の位置情報をRTK-GNSS測量により得ることができる	供試されたGNSS受信機のバイナリ ー形式データをRINEXデータに変 換し、RTK-GNSS測位計算により 位置と時刻を得ることができる。	RTK-GNSSの処理が出来ない。適切なデータ変換が出来ない。	
画像から位置情報を得ることができる	3次元点群データとGNSSの位置情報を組み合わせて、画像から3次元の位置情報を取得できる	与えられた点群データを授業の説明に従って画像データにして画面上に表示させることができる。画像データから点群データに変換できる。	点群データの取り扱いが分からない。	
ドローンについての技術概要	ドローンを使った建設分野での応 用技術について説明できる。	ドローンの飛行原理を説明できる。	ドローンの飛行原理や応用事例が 説明できない。	
SfM/MVSについて	SfM/MVSをつかった3Dモデルの原理を説明できる。精度のよい3Dモデルを作るための手順について説明できる。	写真からSfM/MVSにより3Dモデ ルを生成できる。	SfM/MVSという言葉の意味がわからない。	

学科の到達目標項目との関係

教育方法等

概要	本科のICT関連授業で学習した内容を発展し、建設分野で利用されるBIMやCIMなどの基礎となる空間情報の取り扱いと その利用について修得する。座標変換や画像処理、測位計算などにおける、演算アルゴリズムの構築や実験データの処理などの例題として、実際にプログラミングを作成し、高度な情報処理技術の習得する.
授業の進め方・方法	事前に配布した例題を利用して、各授業項目で、コンピュータを利用した情報処理に必要な知識を身に付ける。授業中の課題に取り組むことで理解をうながす。復習となる応用課題に取り組むこ反復練習により理解を深める。授業では、講義の後で、その講義を理解するための例題に取り組みます。例題は結果を出すためではなく、考え方を意識してください。 宿題として応用問題に取り組むことで、理解が深まります。事前に予習してくることが大切なので、事前に出される例題には、目を通して、必要に応じて、事前に必要な作業(データのダウンロード、キーワード検索など)を済ませておきます。
注意点	定期試験の前だけでなく、授業時間毎に確実に内容を把握するように心がけること。そのために、課題レポート、小テストを行うので予習・復習を継続して行う必要がある。講義への質問や要望等は、直接あるいはメールにて随時受け付ける。

		週	授業内容	週ごとの到達目標		
後期	3rdQ	1週	建設情報処理の授業概要	建設・測量で利用されているICT/IoT技術の概要		
		2週	写真測量技術と3Dモデリング技術	写真測量技術と3Dモデリング技術について説明できる		
		3週	SfM/MVS(1)	SfM/MVSの技術について説明できる。		
		4週	SfM/MVS(2)	SfM/MVSのモデリングのためのソフトウェアの取り扱いができる。		
		5週	SfM/MVS(3)	各自が作成したモデルについて上手くいった点と失敗 した点の要因を評価できる。		
		6週	SfM/MVS(4)	SfM/MVSで3Dモデルを正しく作るための撮影方法について説明できる。		
		7週	SfM/MVSによる 3Dモデルのレビュールと評価	3DモデルをSfM/MVSで作成できる。改善点について 説明できる。		
		8週	ドローンの仕組みと取り扱い方(1)	ドローンの仕組みについて説明できる。		
	4thQ	9週	ドローンの仕組みと取り扱い方(2)	ドローンの利点や使用上の注意点について説明できる。		
		10週	建設技術とドローンを活用した事例	ドローンを活用した事例について理解し、建設分野で の応用例を説明できる。		
		11週	GNSS技術と測位・測量	GNSS(衛星測位システム) 技術について学ぶ。電波や 受信機の仕組みについて知識を得る。		
		12週	GNSS測量	GNSSの測量について学ぶ。搬送波を利用した測量法の違いを理解する。		

	13週	RTK-GNSSによる	測量(1)		RTK-GNSS測量作	RTK-GNSS測量作業の手順を説明できる。			
	14週	RTK-GNSSによる	RTK-GNSSによる測量(2)			実際にGNSS受信機を利用して測量して、その結果を 取り扱うことができる。			
	15週	(期末試験)				(期末試験)			
	16週	試験の返却と解説	試験の返却と解説			試験の返却と解説			
モデルコアカリキュラムの学習内容と到達目標									
分類	分野 学習内容 学習内容の到達目標 到達レベル 授業週					達レベル 授業週			
評価割合									
	試験	レポート	相互評価	態度	ポートフォリオ	その他	合計		
総合評価割合	40	40	20	0	0	0	100		
基礎的能力	20	20	10	0	0	0	50		
専門的能力	20	20	10	0	0	0	50		
分野横断的能力	0	0	0	0	0	0	0		