大分]	L業高等	専門学校	開講年度 平成30年度 (2	2018年度)	授業科目	メカトロニクス I			
科目基礎	情報								
科目番号		30M516		科目区分	専門 / 必修				
受業形態		授業		単位の種別と単位数					
開設学科		機械工学	斗	対象学年	5				
開設期	+	前期	一次のは一支 「いもしロークフェ明タ	週時間数					
数科書/教材 旦当教員	1		土谷武士・深谷健一著,「メカトロニクス入門第2版」, 森北出版. 中野 壽彦						
23数页 到達目標		中北 哥沙							
(1) 電子機構(2) 各種セン		チュエータの	をあげて説明できる.(定期試験) D種類・原理・実装法を理解できる.(こ用いられている基本的な電子回路に	定期試験と課題) ついて理解できる.	(定期試験と課	題)			
レーブリ	ック								
			理想的な到達レベルの目安	標準的な到達レベルの目安		未到達レベルの目安			
評価項目1			電子機械の有用性について深く理解し,基本的項目、および具体的事例を挙げて詳細に説明できる.	電子機械の有用性に な項目を挙げて説明		電子機械の有用性について説明できない.			
評価項目2			各種センサ,アクチュエータの種類・原理・実装法を深く理解でき,応用例について説明できる.	各種センサ, アクチ類・原理・実装法を	-ュエータの種 :理解できる.	各種センサ, アクチュエータの種類・原理・実装法を理解できない。			
評価項目3			各種センサ,アクチュエータに用いられている基本的な電子回路について深く理解でき,応用例について説明できる.	各種センサ, アクチ いられている基本的 ついて理解できる.	-ュエータに用]な電子回路に	各種センサ, アクチュエータに用いられている基本的な電子回路について理解できない.			
学科の到	達目標項	目との関	· 係	•					
学習・教育	到達度目標	₹ (B2)							
JABEE 2.1 教育方法:	` _								
我々の身 制御の事 力ト要素 概要 (教育プロ 授業時間			グラム 第2学年 ◎科目 1 23.25時間						
授業の進め方・方法 (課題提		実社会ではジ等を紹介	I 情報リテラシー,情報工学 I ,情報工学 II ,自動制御,メカトロニクス II ,情報技術(専攻科) ぶ要なメカトロニクス機器選定能力を養うことを目標とするため,補助プリントを配布し関連するWebペーパー 分しながら授業をすすめる. 出について) おわせて 2 回のレポートを課す。						
注意点		【優修上の (自学上の 、要点を 」 (再試験の		内容を読んでおくこと	また. 前回	の講義内容を別綴ノートにまとめ 対して適宜実施する.			
評価									
受業計画		, ,		1					
		t - t	授業内容	週ごとの到達目標					
		1週	1.メカトロニクス序論 (1)メカトロニクスとは		メカトロニクスとはどのような技術か例を挙に できる.				
			(2)メカトロニクスの構成		とこる。 メカトロニクスの構成について例を挙げて説明				
		3迥	2. センサ (1)センサとA/D変換	体	センサからの情報をコンピュータに取り込む手法を 体的に説明できる.				
	1stQ		(2)位置センサ (3)ポテンショメータ, レゾルバ	, :	位置センサであるマイクロスイッチ, 光電スイッラ, ポテンショメータ, レゾルバを理解できる.				
		5週	(4)エンコーダと2進数		インクリメンタルエンコーダ, アブソリュートエンニーダの原理が理解できる.				
			(5)カセンサ (6)速度センサー加速度センサ	で	ひずみゲージ,ホイートストンブリッジについて理できる. タコゼネレータとサイズモ系について理解できる				
I									

前期		1週	1. メカトロニクス序論 (1)メカトロニクスとは	メカトロニクスとはどのような技術か例を挙げて説明できる.			
		2週	(2)メカトロニクスの構成	メカトロニクスの構成について例を挙げて説明できる.			
		3週	2. センサ (1)センサとA/D変換	センサからの情報をコンピュータに取り込む手法を具体的に説明できる.			
	1stQ	4週	(2)位置センサ (3)ポテンショメータ,レゾルバ	位置センサであるマイクロスイッチ, 光電スイッチ, ポテンショメータ, レゾルバを理解できる.			
		5週	(4)エンコーダと2進数	インクリメンタルエンコーダ, アブソリュートエンコーダの原理が理解できる.			
		6週	(5)カセンサ	ひずみゲージ, ホイートストンブリッジについて理解 できる.			
		7週	(6)速度センサ,加速度センサ	タコゼネレータとサイズモ系について理解できる.			
		8週	前期中間試験				
	2ndQ	9週	前期中間試験の解答と解説	分からなかった部分を把握し理解できる.			
		10週	3. アクチュエータ (2)直流モータの原理と駆動回路	直流モータの原理, 駆動回路について理解できる.			
		11週	(3)交流モータ	交流モータの原理を理解できる.			
		12週	(4)ステッピングモータ,その他のモータ	ステッピングモータ,その他のモータの原理を理解できる.			
		13週	(5)空気圧・油圧機器	空気圧・油圧機器の動作原理と特徴を理解できる.			
		14週	4. パワーエレクトロニクス トランジスタ, インバータ	パワーエレクトロニクスの基礎について理解できる.			
		15週	前期期末試験				
		16週	前期期末試験の解答と解説	分からなかった部分を把握し理解できる.			

モデルコアカリキュラムの学習内容と到達目標									
分類		分野	学習内容	学習内容の到達目標		到達レベル	授業週		
専門的能力	分野別の専 門工学	機械系分	野計測制御	代表的な物理量の計測方法と計測機器を説明できる。			4	前3,前4,前 5,前6,前7	
評価割合									
			試験		課題	合計			
総合評価割合			80		20	100			
基礎的能力			10		10	20			
専門的能力			60		10	70	70		
分野横断的能力			10		0	10			