大分工業高等原	専門学校	開講年度	平成30年度 (2	2018年度)	授業科目	情報数学			
科目基礎情報									
科目番号	30S412			科目区分	専門 / 必	· 修			
授業形態	授業			単位の種別と単位					
開設学科	情報工学	—————————————————————————————————————		対象学年 4					
	後期			週時間数	後期:2				
数科書/教材	プリント	を配布する.		<u> </u>					
担当教員	徳尾 健司								
到達目標									
(1) 論理や数学的概念 (2) 自主的,継続的に	をプログラ: 学習するこ _の	ミングと関連付けて とができる. (課題	こ実践的に理解する。 夏)	. (定期試験と小う	テスト)				
ルーブリック									
· · · · · · · · · · · · · · · · · · ·		理想的な到達レ	ベルの目安	標準的な到達レベルの目安		未到達レベルの目安			
論理や数学的概念をプグと関連付けて実践的		グラミングと関	論理や数学的概念について,プログラミングと関連付けて他者に説明できるレベルで理解している.		就および関連する こついて, 講義で ご解くことができ	論理や数学的概念および関連する プログラミングについて,基本的 な概念の定義や用語の定義を述べ ることができない.			
自主的,継続的に学習 できる.	することが	全ての課題を提工夫がみられる	出し,解答に創意	る. 全ての課題を提出している.		課題の提出率が6割未満である.			
- 学科の到達目標項	目との関	 係							
学習・教育到達度目標 JABEE 1(2)(g) JABEE	(B2) 2.1(1)②								
教育方法等									
概要	. 講義を通じて, 抽象的な概念はHaskellにおける具体的な表現と結び付けられる. (科目情報) 教育プログラム 第1学年 © 科目 授業時間 23.25時間 関連科目 論理数学, 形式言語理論, 計算理論								
	原則として毎回,授業内容の理解を問う小テストを実施するので,授業を良く聞いて理解に努めること.								
授業の進め方・方法	※ 授業日程について、後期中間試験前に7回、後期中間試験後に6回の授業を実施するものとし、そのため休講および補講で調整を行う場合がある。								
	(参考図書) [1]Kees Doets and Jan van Eijck, The Haskell Road To Logic, Maths And Programming, College Publications. [2]Makinson, D., Sets, Logic and Maths for Computing, Springer. [3]Susanna S. Epp, Discrete Mathematics with Applications, Brooks Cole.								
	(課題提出について) 全課題の60%以上の提出を単位修得の条件とする.								
	(再試験について) 年度末の再試験期間に実施する. 受験資格者については試験解説時にアナウンスする.								
	(履修上の注意) 配布プリントを整理するためのクリアファイル(A4サイズ)を用意すること.								
注意点	(自学上の注意) 参考図書の必要箇所を参照して予習・復習を行うこと、授業内容は [1] に基づく、[2] は情報数学の教科書として書かれた他の本、[3] は問題が豊富で演習に役立つ、課題に取り組むために、自宅でもHaskellのプログラミング環境を構築することが望ましい、(自宅で環境を構築できない場合は、放課後に情報システム実験室を利用すること) https://www.haskell.org/ghc/download								
 評価									
授業計画									
<u>~~~~</u>				1					
	週	授業内容		I	週ごとの到達目標	<u> </u>			

授業計画							
		週	授業内容	週ごとの到達目標			
後期	3rdQ	1週	イントロダクション	Haskellの概要			
		2週	論理(1)	論理結合子,論理的妥当性			
		3週	論理(2)	量化子, λ抽象			
		4週	証明(1)	証明の様式, 証明の規則 (論理結合子)			
		5週	証明(2)	証明の規則 (量化子, 背理法)			
		6週	集合,型,リスト(1)	集合, Russellのパラドックス			
		7週	集合,型,リスト(2)	集合の演算, リスト			
		8週	後期中間試験				
	4thO	9週	後期中間試験の解答と解説 / 関係(1)	直積, 関係, 関係の性質			
		10週	関係(2)	順序関係,同値関係,同値類と分割			
		11週	関数(1)	全射, 単射, 全単射			
		12週	関数(2)	合成と逆, 部分関数, 関数と同値関係			
		13週	帰納法と再帰(1)	数学的帰納法, 再帰的定義の性質			
		14週	帰納法と再帰(2)	木とリストに関する帰納法と再帰			

	1	5週	後期期末試験						
	1	6週	後期期	ま試験の解答と解説					
モデルコアカリキュラムの学習内容と到達目標									
分類 分野		分野	学習内容		学習内容の到達目標		到達レベル	授業週	
専門的能力	分野別の専 門工学			プログラミ ング	プログラミング言語は計算モデルによって分類されることを説明できる。			4	後1
					主要な計算モデルを説明できる。			4	後1
				情報数学・ 情報理論	集合に関する基本的な概念を理解し、集合演算を実行できる。			4	後6,後7,後 8,後9
		情報系	分野		集合の間の関係(関数)に関する基本的な概念を説明できる。			4	後11,後 12,後14,後 15
					 論理代数と述語論理に関する基本的な概念を説明できる。 			4	後2,後3,後 4,後5,後 8,後9
					離散数学に関する知識をアルゴリズムの設計、解析に利用することができる。			4	後12,後 13,後15,後 16
評価割合									
試験			小テスト	課題	計				
総合評価割合		50	50			30	20	100	
専門的能力		50	50			30	20	100	