大分工業高等専門	学校	開講年度	平成30年度 (2018年度)		授業科目	工学実験 Ι		
科目基礎情報								
科目番号 30	S213			科目区分 専門 / 必修		<u>修</u>		
授業形態 実際	験・実習			単位の種別と単位数	数 履修単位	: 2		
開設学科情報	報工学科			対象学年	2			
開設期前期	期			週時間数	4	4		
教科書/教材 「	「実験・演習マニュアル」情報工学科で作成、実験実施時に配布							
担当教員 十日	十時 優介							
到達目標								
・簡単なロボットを構成で ・ロボットを制御するプロ・ ・実験結果を効果的に発表	グラムを作	成できる						
ルーブリック								
		型想的な到達レ/	ベルの目安	標準的な到達レベル	レの目安	未到達レベルの目安		
ロボットの構成		高度な構造を持っ 戈できる	ったロボットを構	基本的な構造を持ったロボットを 構成できる		自らロボットを構成することができない		
制御プログラム作成		高度に自律する[ラミングができる	コボットのプログ る	自律するロボットのプログラミン グができる		リモートコントロールのみのプロ グラミングができる		
実験結果の発表			て、余すところな 方法で発表できる	実験結果の重要な部分については、伝わり易い方法で発表できる		実験結果について、他人にほどんど伝えることができない		

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
ロボットの構成	高度な構造を持ったロボットを構 成できる	基本的な構造を持ったロボットを 構成できる	自らロボットを構成することができない
制御プログラム作成	高度に自律するロボットのプログ ラミングができる	自律するロボットのプログラミン グができる	リモートコントロールのみのプロ グラミングができる
実験結果の発表	実験結果について、余すところなく、伝わり易い方法で発表できる	実験結果の重要な部分については、伝わり易い方法で発表できる	実験結果について、他人にほどんど伝えることができない

学科の到達目標項目との関係

学習・教育到達度目標 (D1)

教育方法等

概要	本実験ではLEGOブロックを用いたロボット製作を通して、「ものづくり」の感覚、プログラムによる制御、ロボットの基本となる機械部品の動きを学ぶ、情報工学科の実験・演習は、コンピュータ、電気電子、情報通信を3つ柱として、5年間で学べるように計画している。本実験はこれら要素全てをバランスよく含み、今後の実験・演習を進めていく上での基礎的な力となる。また、グループでの作業を中心に行うことにより、技術者として大切なコミュニケーション能力を高め、共同での目標設定、役割分担、問題解決を体験する。実験の結果をレボートとしてまとめることにより論理的な文章作成能力を養い、プレゼンテーションを通してわかりやすい発表技術を修得する。
	(科目情報) 授業時間 39時間 関連科目 工学実験基礎,工学実験Ⅱ
	LEGOブロックを用いて、ロボットを制作する形で進める.
授業の進め方・方法	(再試験について) 再試験は実施しない.
注意点	(履修上の注意) (1) 積極的に取り組むこと、質問はいつでも受け付ける。 (2) プログラムはC言語で作成する、充分に復習しておくこと。 (3) 使用するLEGOブロック, パソコンは大切に扱うこと。 (4) 作業着 (上着) を着用すること。 (5) レポートや作品, 実験日誌は期限を守って提出し, 指示された要件を必ず満たすこと。 詳細は, 「実験・演習マニュアル」に示す。

(自学上の注意) わからないことをその都度積極的に調べる.

評価

授業計画

又未可臣	-	T.	Team 1 =	\tag{\tag{\tag{\tag{\tag{\tag{\tag{
		週	授業内容	週ごとの到達目標
		1週	1. オリエンテーション ・実験室の使い方 ・LEGOブロックの貸与 2. C言語でロボットを動かす	○この教科の概要,計画,実験,出欠に関する一般的注意,報告書(レポート)の作成方法の説明を受け,概要を理解する. ○実験室の使い方を理解する. ○プログラム制御対象のロボットを製作する.
		2週	3. 制御の流れ	○順次処理,分岐処理,繰り返し処理の概念を理解する.
		3週	4. センサを使う	○センサの使い方を知る.
	1stQ	4週	4. センサを使う	○各種センサを使ったプログラムを作成し, センサの 利便性を知る.
前期		5週	5. RoboCup Jr.の説明,ロボットの構想,設計 6. サッカーロボット製作 7. RoboCup Jr.(サッカー試合)	○RoboCup Jr.の公式ルールに従ってサッカーのリー グ戦を行う.
	6週	5. RoboCup Jr.の説明,ロボットの構想,設計 6. サッカーロボット製作 7. RoboCup Jr.(サッカー試合)	○RoboCup Jr.の公式ルールに従ってサッカーのリー グ戦を行う.	
		7週	5.RoboCup Jr.の説明,ロボットの構想,設計 6.サッカーロボット製作 7.RoboCup Jr.(サッカー試合)	○RoboCup Jr.の公式ルールに従ってサッカーのリー グ戦を行う.
		8週	8. 自由製作	○複数名で好きなテーマを決めロボットを製作する.
		9週	8. 自由製作	○複数名で好きなテーマを決めロボットを製作する.
	2ndQ	10週	8. 自由製作	○複数名で好きなテーマを決めロボットを製作する.
	ZHUQ	11週	8. 自由製作	○複数名で好きなテーマを決めロボットを製作する.
		12週	9. プレゼンテーション準備	

		13ì	14週		. プレゼン, ブロック整理 ○製作したロボットにする.			トについて	, 発表		
		14ì									
		15ì	周								
		16ì	固								
モデルコス	アカリ:	キユき	ラムの	学習	内容と到達	目標					
分類			分野		学習内容	学習内容の到達目標	<u>=</u>			到達レベル	授業週
						物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。			1		
					1	実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取 扱を身に付け、安全に実験できる。			1		
						実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。			仕方、考	1	
基礎的能力「工			丁学宝龄坛		工学宝除坛	実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。			1		
	工学基	礎	術(各種測定 方法、データ処理、考 察方法)	測定デー	を ボ(各種測定 ・ 方法、デー ・ ク処理、考 ・ 察方法)	タについて論理的な考察ができる。 実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。				1	
				、考し		実験データを適切なグラフや図、表など用いて表現できる。				1	
			赤/3/五)	,	宗乃仏)	実験の考察などに必要な文献、参考資料などを収集できる。				1	
						実験・実習を安全性や禁止事項など配慮して実践できる。				1	
						個人・複数名での実験・実習であっても役割を意識して主体的に 取り組むことができる。				1	
						共同実験における基本的ルールを把握し、実践できる。				1	
						レポートを期限内に提出できるように計画を立て、それを実践できる。				1	
評価割合											
	討	験		発	 表	相互評価	態度	ポートフォリオ	その他	合	 計
総合評価割合	<u>}</u> 0			40		0 20		0	40	10	0
基礎的能力	0 0		0		0 0		0	0	0		
専門的能力	0 40		40		0	20	0	40	10	0	
分野横断的能	能力 0 0		0		0	0	0	0	0		