大分.	工業高等	専門学校	開講年度 令和03年度 (2021年度)		2021年度)	授業科目	プラズマ工学						
科目基礎情報													
科目番号		R03AES1	09		科目区分	専門/選	₹						
授業形態		授業			単位の種別と単位	数 学修単位:	2						
開設学科 専攻科電気			气電子情報工学専攻		対象学年	専1							
開設期		前期			週時間数	前期:2							
教科書/教	材	(教科書) なし											
担当教員 上野 崇寿													
到達目標													
(1) プラズマの基本性質について説明ができる。(課題と定期試験) (2) プラズマの特徴,その応用例を理解し,デバイ遮蔽とプラズマ振動について説明ができる。(定期試験) (3) パルス伝送回路の基礎を理解し,発生システムについて説明ができる。(課題と定期試験) (4) 課題を通して理解を深め,継続的な学習ができる。(課題)													
ルーブリック													
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安						
評価項目1			プラズマの基本性質について説明ができる.		プラズマとは何か説明ができる.		プラズマとは何か説明ができない						
評価項目2			プラズマの特徴,その応用例を理解し、デバイ遮蔽とプラズマ振動について説明ができる.		プラズマの特徴,その応用例を理解している.		プラズマの特徴,その応用例を理解していない.						
 評価項目3 			パルス伝送回路の基礎を理解し , 発生システムについて説明がで きる.		パルス伝送回路の基礎を理解している.		パルス伝送回路の基礎を理解していない.						
学科の到	」達目標項	目との関係	系										
学習・教育 JABEE 1(2	計標 (E1) 2)(d)(1) JA	ABEE 1(2)(g)										
教育方法	 等												
プラズマを 電現象とプ いて、その (科目情報		を用いた技術は、産業界の新しい基盤技術として広く浸透し、応用されている。本講義では、物質の三態の放プラズマ現象を述べ、更に、環境・リサイクル・医療福祉・バイオ等多くの応用分野を持つプラズマ技術につの基礎から応用まで説明する。 服) グラム第3学年 ◎科目											
主に板書に			こて進める.										
板書 適宜 注意点 て復 (自: 常に!		板書を行う 適宜,資料 て復習して (自学上の 常に新しい	修上の注意) を行うこと、 ,資料を配布するので,内容を把握し整理しておくこと、高電圧工学を履修したことのあるものは,その内容につい 習しておくこと、 学上の注意) 新しい知識を得られるようにしておくこと、また,身の回りの家電製品には,プラズマを利用している物が多数あ で,講義中に得た知識と照らし合わせながら理解を深めていくと良い。										
評価		0 - 2 - 2 2	132 10 13 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	- M > C H > C O O	<u> </u>								
評価 (総合評価) 試験(70%) およびレポート(30%)にて総合評価を行う。 (単位習得の条件について) 総合評価が60点以上を単位習得の条件とする。 (再試験について) 原則として再試験は実施しない。 授業の属性・履修上の区分													
	<u>ョエ・Mをで</u> ィブラーニ		□ ICT 利用		□ 遠隔授業対応		□ 実務経験のある教員による授業						
	<u> 1 </u>	. <u></u>					□ 大物性歌ののも教員による収集						
	ī												
ᅩ	4	週 担			ii.		<u> </u>						
前期	1stQ	t t -	第1章プラズマの性 1.プラズマとは 2.気体の性質	質と生成	复								
		2週	第1章プラズマの性 3.荷電粒子の振る 4.気体の絶縁破壊	5舞い	右	売電粒子の振る 舞	手いについて説明できる.						
		3週 第	2章気体の絶縁破壊				電圧電流特性ならびに各種絶縁破壊のメカニス いて説明できる.						
		4週 9	第3章液体の絶縁破	壊			の電圧電流特性ならびに各種絶縁破壊のメカニズ ついて説明できる.						
		5週 第	第4章固体の絶縁破	壊		絶縁破壊を防ぐためにはどうすればよいか説明できる							
			第5章プラズマの性		診	プラズマの性質について,定義とデバイ遮蔽について 説明できる ラズマ振動とは何かについて説明できる.							
		7週	第6章エネルギー貯 1.容量性エネルキ 2.誘導性エネルキ	デー貯蔵 ドー貯蔵			性エネルギーおよび誘導性エネルギーの貯蔵方法 いて説明できる.						
		8週	第6章エネルギー貯 3.運動エネルギー	蔵システム -貯蔵	道	重動エネルギーの貯蔵方法について説明できる.							

		9週	第7章パルス伝送回 1.パルス伝送線跟 2.負荷との整合				抵抗成分を含まない無損失の伝送線路のパルス伝送に ついて概念的な説明ができる.				
	2ndQ	10週	第7章パルス伝送回 3.単一線路 4.ブルームライ 5.インピーダン	ン線路			伝送線路や伝送線路間の接続部分における波の反射や 透過, 負荷整合について説明できる.				
		11週	第8章発生システム 1.高電圧発生回路 2.パルス圧縮・	x 各 昇圧		プラズマ発生回路のいて説明できる.	プラズマ発生回路の動作原理, パルス圧縮・形成について説明できる.				
	·	12週	第8章発生システム 3.スイッチ 4.発生システム	Δ		半導体スイッチの 原理について説明	半導体スイッチの利用範囲について理解し, その動作 原理について説明できる.				
		13週	第9章プラズマの計測 第10章プラズマの応用			プラズマ発生に必要のできる.	プラズマ発生に必要な大電流,高電圧の計測方法を説明できる.				
		14週				プラズマの応用分類	プラズマの応用分野について説明できる.				
		15週	前期期末試験								
		16週	前期期末試験の解答	答と解説		後期期末試験にて	後期期末試験にて理解不足の箇所を理解する.				
モデルコアカリキュラムの学習内容と到達目標											
分類 分野			学習内容の到達目標				到達レベル 授業週				
評価割合											
i		試験	発表	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合		80	0	0	0	0	20	100			
基礎的能力		20	0	0	0	0	0	20			
専門的能力		60	0	0	0	0	20	80			
分野横断的能力		0	0	0	0	0	0	0			