都切		専門学校	開講年度 平成31年度 (2	2019年度)	授	業科目	
科目基础				•			
科目番号		0087		科目区分		専門 / 必何	
授業形態 講義				単位の種別と単位	立数	履修単位:	1
開設学科機械工学科		機械工	学科	対象学年		5	
開設期後期		後期		週時間数		2	
			欠、北山直方共著「伝熱工学 新装第2版」	」(森北出版)(978-46	27610743	3
担当教員		白岩 寛	之				
到達目	_						
2) 熱移重 3) 熱交換 4) 対流熱	松伝達に関す	に関する基 必要な計算	ること。 礎的な計算ができること。 ができること。 を理解できること。				
ルーブ	リック						
			理想的な到達レベルの目安	標準的な到達レベルの目安 		每	最低到達レベルの目安(可)
評価項目1			熱移動の基本法則を十分に理解し 、説明できる。	熱移動の基本法則を理解できる。		弾できる。	熱移動の基本法則の一部を理解で きる。
平価項目	2		熱移動の基本法則に関する応用問題を解くことができる。	熱移動の基本法則に関する基礎的 な計算ができる。			熱移動の基本法則に関する平易な 基礎問題を解くことができる。
平価項目	3		熱交換器の設計に必要な応用計算 ができる。	熱交換器の設計に必要な計算がで きる。		計算がで	熱交換器の設計に必要な計算の一 部を解くことができる。
評価項目4			対流熱伝達に関する基礎事項を十 分に理解し、説明できる。	対流熱伝達に関する基礎事項を理 解できる。		楚事項を理	対流熱伝達に関する基礎事項を一 部を理解できる。
学科の	到達目標工	頁目との関	関係 アイス				
教育方法	法等						
エンジン、			、冷凍機、ヒートポンプ、ボイラに付属する熱機器の設計を行う場合、熱力学および熱機関の基礎の上に更に の知識が必要となる。熱移動の基本法則を理解し、熱交換器の設計に必要な計算力を養う。				
微分・積分			分学を十分に理解しておく必要がある。 を用いた計算方法について、演習問題等を通して理解を深めていくため、予習・復習などの自己学習をしっか				
主意点		参考資料ーション成績の記	斗:甲藤好郎著「伝熱概論」(養賢堂) シまで-」(共立出版)、日本機械学会編 平価方法について:最終評価点は、後期	『「応用システム編 中間試験結果(50	二朗、記 編(γ3編)%)、	午国良共著 副)熱機器」 学年末試験	「熱流体力学-基礎から数値シュミし (日本機械学会) 結果(50%)により評価する。
#2_ ⊾.	フナリナ	計1 基4	隼について:学年成績60点以上を合格と) 'O' o			
	<u>フォリオ</u> ≖						
受業計	<u> </u>	I.m.	15744 1 25		\B →' \	0 201± C1	
後期		週	授業内容			の到達目標	
		1週	1. 熱移動に関する基本事項		然伝導の法則	、熱伝達、 について理	熱放射、熱通過、熱流束、フーリエ 解する。
		2週	1. 熱移動に関する基本事項		熱伝導		熱放射、熱通過、熱流束、フーリエ
		3週	2. 熱伝導の計算		平行平 理解し	面板、円管 て、応用計	、球状壁の熱伝導の計算法について 算ができるようにする。
	3rdQ	4週	2. 熱伝導の計算		平行平 理解し	面板、円管 て、応用計	、球状壁の熱伝導の計算法について 算ができるようにする。
		5週	2. 熱伝導の計算		理解し	て、応用計	、球状壁の熱伝導の計算法について 算ができるようにする。
		6週	3. 熱通過の計算		平板壁	、円管壁の	熱通過の計算ができるようにする。
		7週	3. 熱通過の計算		平板壁	、円管壁の	熱通過の計算ができるようにする。
		8週	後期中間試験				
		9週	4. 熱交換器における熱移動形式				よび熱移動形式について理解する。
		10週	4. 熱交換器における熱移動形式			,,,,,	よび熱移動形式について理解する。
	4thQ	11週	5. 熱交換器の伝熱計算		、応用	計算ができ	れつき面の伝熱計算について理解しるようにする。
		12週	5. 熱交換器の伝熱計算		、応用	計算ができ	れつき面の伝熱計算について理解しるようにする。
		13週	5. 熱交換器の伝熱計算 6. 熱伝達		、応用 対流熱	計算ができ 伝達の計算	れつき面の伝熱計算について理解しるようにする。 に必要な無次元数について理解し、 ようにする。
		14週	6. 熱伝達				に必要な無次元数について理解し、 ようにする。
		15週	6. 熱伝達				に必要な無次元数について理解し、 ようにする。
		16週	学年末試験				
モデル:	コアカリ=	キュラムの	D学習内容と到達目標				
分類 評価割1		分野	学習内容の到達目標				到達レベル 授業週
<u>「叫台リ</u>	ப		定期試験			合計	
総合評価	 割合		100			100	
ᄱᄪ	רו נים		100			1100	

知識の基本的な理解	60	60
思考・推論・創造への適応力	40	40