都城工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	電気情報工学実験			
科目基礎情報									
科目番号	0018			科目区分	専門 / 必	修			
授業形態	実験			単位の種別と単位数	数 履修単位	履修単位: 4			
開設学科	電気情報工学	科		対象学年	2	2			
開設期	通年			週時間数	4	4			
教科書/教材	プリントを配布する。								
担当教員	野地 英樹,丸田 要								
지나는 다 100									

<u>|到達目標|</u>

- 1)実験回路を正確に構成できる。 2)共同実験者と協力しながら、自ら積極的に実験を進めることができる。 3)実験結果を実験ノートや実験レポートに要領良くまとめることができる。 4)座学で学んだ知識を活かして、要領良く考察をまとめることができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	最低到達レベルの目安(可)
評価項目1	実験回路を正確に構成できる。	実験回路を構成できる。	担当教員の指導により、実験の回 路を構成できる。
評価項目2	共同実験者と協力しながら、自ら 積極的に実験を進めることができ る。	共同実験者と協力しながら、実験 を進めることができる。	担当教員の指導により、共同実験 者と協力しながら、実験を進める ことができる。
評価項目3	実験結果を実験ノートや実験レポートに要領良くまとめることができる。	実験結果を実験ノートや実験レポートにまとめることができる。	担当教員の指導により、実験結果 を実験ノートや実験レポートにま とめることができる。
評価項目4	座学で学んだ知識を活かして、要 領良く考察をまとめることができ る。	座学で学んだ知識を活かして、考 察をまとめることができる。	担当教員の指導により、座学で学 んだ知識を活かして、考察をまと めることができる。

学科の到達目標項目との関係

教育方法等

概要	「電気基礎 I (電気磁気学)」や「電気基礎 II (電気回路)」で学んだ基本的法則や現象を実験により確認することで、電気電子工学の基礎知識をより深く理解する。また、電気電子工学実験に欠かすことのできない測定データの分析・整理、実験結果に対する考察を行い、報告書にまとめる能力を身につける。
授業の進め方・方法	【履修上の注意】 1) 一班約2名ずつに分けて各実験テーマを行うが、協力分担して実験を進め、傍観者とならないこと。 2) 前期実験テーマについては実験ノート、後期実験テーマについては報告書(レポート)により報告を行なう。 【事前に行う準備学習や自己学習】 1) 実験指導書をよく読み、次の実験テーマの原理と実験方法を把握し、考察を考えておくこと。 2) 前期実験テーマについては、実験ノートに以下の項目について実験日までに書いてくること:実験テーマ、目的、原理、測定回路図、実験方法。 3) 後期実験テーマについては、実験レポートに以下の項目について実験日までに書いてくること:目的、原理、測定回路図、実験方法。

注意点

ポートフォリオ

授業計画

1又未可止	(未前世)								
		週	授業内容	週ごとの到達目標					
		1週	第1期実験内容の説明	前期実験テーマ1~5の説明					
		2週	1. 電熱器の効率試験	電熱器の効率について説明できる。					
		3週	2. 電流計・電圧計の内部抵抗の測定	電流計・電圧計の内部抵抗の測定法を修得し、その大 きさを説明できる。					
	1stQ	4週	3. 等電位線の測定	電極間の等電位線を測定でき、等電位線と電気力線の 関係を理解できる。					
	ISIQ	5週	4. 分圧・分流器の実験	分圧器と分流器の構成の仕方及び実験の方法を習得で きる。					
		6週	5. 地磁気の測定	コイルの中心にできる磁界を利用して地球磁場の値を 測定でき、その概念を説明できる。					
		7週	第1期実験の総括	前期実験テーマ1~5の総括					
前期		8週	第2期実験内容の説明	前期実験テーマ6~10の説明					
		9週	6. 熱の仕事当量の測定	熱の仕事当量を測定でき、電流の熱作用を理解できる。					
		10週	7. キルヒホッフの法則	キルヒホッフの法則を実験により確認することができ る。					
	2ndO	11週	8. ホイートストンブリッジ	ブリッジ回路の接続の仕方が理解でき、平衡条件の取り方を習得できる。					
	ZiluQ	12週	9. 容量リアクタンスの周波数特性	容量リアクタンスの周波数特性について説明できる。					
		13週	10. 誘導リアクタンスの周波数特性	誘導リアクタンスの周波数特性について説明できる。					
		14週	第2期実験の総括	前期実験テーマ6~10の総括					
		15週	実験予備日	前期実験テーマの追実験					
		16週							
		1週	第3期実験内容の説明	後期実験テーマ11~15の説明					
後期	3rdO	2週	11. 電圧計・電流計法による抵抗測定	電圧計と電流計による抵抗測定の仕方を修得できる。					
12/41	3, 4, 4	3週	12. 白熱電球の電圧-電流特性	白熱電球の電圧-電流特性を測定でき、普通の抵抗素子 との違いを説明できる。					

		4週	. 13	3. F	RLC素子の電	王·電流波形)端子電圧及び電きさ及び電			
		5週	. 14					・電流の大きさ及び位相の関係について理解できる。 交流ブリッジの平衡について理解できる。				
		6週	1.5	5. ⁷	交流計器の周			整流形及び	整流形及び可動鉄片形計器の周波数に対する特性を測			
		7週			実験の総括				定でき、その違いを理解できる。 後期実験テーマ11~15の総括			
		8週			<u>実験の応出</u> 実験内容の診							
		9週	16	5. ī	直流電力の測		ま ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・					
				10. LabVIEWによるバーチャル電子計測			パソコン上で	<u> 供給される条件を</u> ご行うバーチャル				
		-					1 11///3	方法が習得で		<u> </u>		
	4thQ						RC直列回路	重ねの理について理解できる。 RC直列回路の電圧・電流を測定でき、それらを複素ベクトル表示できる。				
		13週 2		20. RL直列回路のベクトル図 第4期実験の総括			RL直列回路的	アル表示できる。 RL直列回路の電圧・電流を測定でき、それらを複素ベクトル表示できる。 後期実験テーマ16~20の総括				
							後期実験テー					
		15ì	15週 実		実験予備日		後期実験テー	後期実験テーマの追実験				
	—	16ì		4 71								
	アカリニ	<u> ドユ :</u>		'営	内容と到達					四十二 - 111	₩₩₩	
分類			分野		学習内容	学習内容の到達目 物理、化学、情報		ス基礎的か原理や	祖象を明らかに	到達レベル	/ 授業週 前1,前8,後	
						するための実験手	F法、実験手順(5基礎的な原達や こついて説明でき 実験器具・試薬・	る。	2	1,後8	
						扱を身に付け、安	全に実験でき	5。 5。	初种切正〇吋式	2	前2,前9	
						実験データの分析 察の論理性に配慮	所、誤差解析、 猿して実践できる	自効桁数の評価、 る。	整理の仕方、考	2	前3,前4,前 5,前6	
			術(各種測定		工学実験技	実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。			2	前10,前 11,前12,前 13		
基礎的能力	工学基础	楚			方法、データ処理、考	践できる。				前2,前3,前 4,前5,前6		
					察方法)	実験データを適切なグラフや図、表など用いて表現できる。				2		
						実験の考察などに必要な文献、参考資料などを収集できる。 実験・実習を安全性や禁止事項など配慮して実践できる。						
						個人・複数名での実験・実習であっても役割を意識して主体的に 取り組むことができる。				2		
						共同実験における基本的ルールを把握し、実践できる。				2		
						レポートを期限内に提出できるように計画を立て、それを実践できる。						
		分野別の工 学実験・実 習能力 電気・電 系分野【 験・実習 力】			電気・電子 系【実験実 習】	電圧・電流・電力などの電気諸量の測定が実践できる。			2	前3,前5,後 3,後9		
				電子子		抵抗・インピーダンスの測定が実践できる。				2	前12,前 13,後2,後4	
	\\\					オシロスコープを用いて実際の波形観測が実施できる。				2	後4	
専門的能力	学実験					電気・電子系の実験を安全に行うための基本知識を習得する。				2	前1,前8,後 1,後8	
	習能力					キルヒホッフの法則を適用し、実験結果を考察できる。				2		
						分流・分圧の関係を適用し、実験結果を考察できる。				2		
						ブリッジ回路の平衡条件を適用し、実験結果を考察できる。 重ねの理を適用し、実験結果を考察できる。				2		
									た	2		
評価割合						・1 ノヒータン人の	ノロル女材 仕で	考慮し、実験結果	で与分してる。			
	試	験		/l\ -	テスト	レポート	口頭発表	成果品実技	その他			
総合評価割		-J/\		0	> 1	100	0	0	0	10		
知識の基本 理解			0			100	0	0	0		00	
T + 14-A	· 創	0		0		0	0	0	0	0		
思考・推論 造 への適応				0		0	0	0	0	0		
造 への適応	<u>カ</u>			0		0						
思考・推論 造 への適応 汎用的技能 態度・志向 (人間力)	<u>カ</u> 0			0		0	0	0	0	0		