都城工業高等専門学校		開講年度	令和05年度 (2	023年度)	授業科目	RC構造学		
科目基礎情報								
科目番号	0059			科目区分	専門 / 必	専門 / 必修		
授業形態	講義			単位の種別と単位数	数 履修単位:	履修単位: 2		
開設学科	建築学科			対象学年	4			
開設期	通年			週時間数	2			
教科書/教材	林静雄 編著, 初めて学ぶ鉄筋コンクリート構造(市ヶ谷出版社)ISBN978-4-87071-150-1							
担当教員	浅野 浩平							

到達目標

- R C 構造の特徴や仕組みを理解すること R C の梁・柱の許容応力度設計法の基本的な考え方を理解すること 設計基準、例題を参照しながら、梁・柱の断面算定が行うことができること

ルーブリック

	理想的な到達レベルの目安 A	標準的な到達レベルの目安 B	未到達レベルの目安 C	(学生記入欄) 到達したレベルにOをする こと。
評価項目1	応力を理解し、断面における応力度、ひずみ、軸力比、等価断面積などがどのような場合でも算定することができる	授業中に扱った例題と同様 ならば解くことができる	R C構造の特長を理解している	А·В·С
評価項目2	鉄筋とコンクリートの相互 作用を良く理解し、単筋お よび複筋梁の許容応力度設 計が応用的なものでもでき る	単筋および複筋梁の許容応 力度設計ができる	授業中に扱った例題と同様 ならば解くことができる	А·В·С
評価項目3	二軸応力状態およびせん断 力の伝達方法を良く理解し 、許容応力度設計ができ、 せん断補強筋の配筋も提案 できる	せん断力に対する許容応力 度設計ができる	授業中に扱った例題と同様 ならば解くことができる	A · B · C

学科の到達目標項目との関係

学習・教育到達度目標 B JABEE c JABEE d

教育方法等

概要	RC構造の許容応力度設計法による部材断面設計の基礎理論を、最も基本的な部材である梁・柱を通して習得する。
授業の進め方・方法	この授業は、R C 構造の基礎的内容から許容応力設計までを学修する。コンクリートの歴史から、高度な知識を要求する例題を扱い、講義形式で行う。 各講義では、その回に扱う内容に沿った例題を数問解説し、講義時間内に演習問題を解かせるようにしている。
注意点	構造力学の弾性論(応力度・ひずみ度)や平面保持の仮定、建築材料のコンクリートや鋼材の力学的性質について復習しておくこと。 評価方法は4回の定期テストの総合評価が60%以上を合格とする。 ※授業内容について 基本的には下記の授業計画に沿って進めていくが、内容が多少変更する場合がある。
10 1 - 11 1	

ポートフォリオ

(学生記入欄) 【授業計画の説明】実施状況を記入してください。

【理解の度合】理解の度合について記入してください。 (記入例) ファラデーの法則、交流の発生についてはほぼ理解できたが、渦電流についてはあまり理解できなかった。 ・前期中間試験まで:

・前期末試験まで : ・後期中間試験まで: ・学年末試験まで :

【試験の結果】定期試験の点数を記入し、試験全体の総評をしてください。 (記入例) ファラデーの法則に関する基礎問題はできたが、応用問題が解けず、理解不足だった。 ・前期中間試験 点数: 総評:

・前期末試験 総評: 点数: ·後期中間試験 点数: 総評: ・学年末試験 点数: 総評:

【総合到達度】「到達目標」どおりに達成することができたかどうか、記入してください。

・総合評価の点数: 総評:

(教員記入欄)

【授業計画の説明】実施状況を記入してください。

【授業の実施状況】実施状況を記入してください。

・前期中間試験まで:

・前期末試験まで : ・後期中間試験まで: ・学年末試験まで:

【評価の実施状況】総合評価を出した後に記入してください。

授業の属性・履修上の区分

□ アクティブラーニング

4thQ

9週

せん断力を受けるR C部材

する
いて理解する
縮性状や構成
仮定
を理解する
トについて理
トについて理
理解する
て理解する

□ 遠隔授業対応

□ 宝務経験のある教員による授業

せん断力についての基礎知識を理解する

	1/	D週 せん	(株力の塩)車			上能) ニー・ハフ	田級オマ		
			断力の概要		モールの応力円(2軸応力状態)について理解する せん断スパン比、せん断補強筋、主筋量、付着性状に				
)断破壊性状 		ついて理解する				
			断力の伝達		トラス機構について理解する				
			<u>断力の伝達</u> **カに対する		アーチ機構について理解する		\ Z		
)計合心力度設計 5許容応力度設計	R C 梁の許容応力度設計ができるようになる R C 柱の許容応力度設計ができるようになる				
				5許容応力度設計 5許容応力度設計	耐震壁の許容応力度設計がて				
モデルコ			引内容と到						
分類	737 1 =	分野	学習内容	学習内容の到達目標		到達レベル	授業週		
				建築材料の変遷や発展について説明]できる。	4			
				建築材料の規格・要求性能について説明することができる。		4			
				セメントの種類・特徴について説明	4				
				コンクリート用軽量骨材があること	4				
				コンクリートの強度(圧縮、引張、E 説明できる。	曲げ、せん断)の関係について	4			
			材料	各種(暑中・寒中など)・特殊(水密、 名称をあげることができる。	高強度など)コンクリートの	4			
				コンクリート製品(ALC、プレキャンできる。	ストなど)の特徴について説明	4			
				耐久性(例えば中性化、収縮、凍害、あげることができる。	<u> </u>	4			
				鋼材の応力~ひずみ関係について訪 界、弾性限界、上降伏点、下降伏点 特定と性質について説明できる。	始明でき、その特異点(比例限点、最大荷重、破断点など)の	4			
				建築構造の成り立ちを説明できる。		4			
				建築構造(W造、RC造、S造、SRC)		4			
				力の定義、単位、成分について説明できる。		4			
				力のモーメントなどを用い、力のつり合い(合成と分解)に関する 計算ができる。		4			
				断面一次モーメントを理解し、図心を計算できる。		4			
				断面二次モーメント、断面相乗モーメント、断面係数や断面二次 半径などの断面諸量を計算できる。		4			
			構造	弾性状態における応力とひずみの定義、力と変形の関係を説明で		4			
				き、それらを計算できる。 曲げモーメントによる断面に生じる 関係を理解し、それらを計算できる	4				
				はり断面内のせん断応力分布につい	4				
				各種構造の設計荷重・外力を計算で		4			
専門的能力	分野別の専	建築系分野		はりの支点の種類、対応する支点反 安定性について説明できる。	力、およびはりの種類やその	4			
כלטמניםנ ובא	門工学	是未不为到		はりの断面に作用する内力としての モーメント)、応力図(軸力図、せん)について説明することができる。	4				
				応力と荷重の関係、応力と変形の関分方程式を用い、幾何学的境界条件明でき、たわみやたわみ角を計算で	「係を用いてはりのたわみの微 −と力学的境界条件について説 ∵きる。	4			
				不静定構造物の解法の基本となる応 きる。	4				
				はり(単純ばり、片持ちはり)の応力ができる。		4			
				偏心圧縮柱の応力状態を説明できる	4				
				ラーメンやその種類について説明で		4			
				ラーメンの支点反力、応力(軸力、せん断力、曲げモーメント)を 計算し、その応力図(軸力図、せん断力図、曲げモーメント図)を かくことができる。		4			
				構造力学における仕事やひずみエネルギーの概念について説明できる。		4			
				仕事やエネルギーの概念を用いて、構造物(例えば梁、ラーメン、トラスなど)の支点反力、応力(図)、変形(たわみ、たわみ角)を計算できる。		4			
				鉄筋コンクリート造(ラーメン構造、コンクリート構造など)の特徴・構造	4				
				構造計算の設計ルートについて説明できる。 建物のぬれと変形能力に其づく構造設計法について説明できる。		4			
				建物の外力と変形能力に基づく構造設計法について説明できる。 断面内の応力の分布について説明できる。		4			
				許容曲げモーメントを計算できる。	4				
				主筋の算定ができる。	4				
				釣合い鉄筋比について説明ができる	4				
				中立軸の算定ができる。	4				
				許容せん断力を計算できる。		4			
				世ん断補強筋の算定ができる。		4			

				終局曲げモーメン	ントについて説明で	 ごきる。		4		
				終局剪断力について説明できる。						
				断面内の応力の分布について説明できる。						
				許容曲げモーメン	ントを計算できる。			4		
	MNインターラクションカーブについて説明できる。							4		
				主筋の算定ができ	きる。			4		
	か合い鉄筋比について説明ができる。							4		
				中立軸の算定が	できる。			4		
				許容せん断力を認	許容せん断力を計算できる。				4	
	せん断補強筋の算定ができる。						4			
		終局曲げモーメントについて説明できる。					4			
				終局剪断力について説明できる。 基礎形式(直接、杭)の分類ができる。 基礎形式別の支持力算定方を説明できる。 地震被害を受けた建物の破壊等の特徴について説明できる。						
評価割合							_			
	試験		発表	相互評価	態度	ポートフォリオ	その他		合計	
総合評価割合	100		0	0	0	0	0		100	
基礎的能力	60		0	0	0	0	0		60	
専門的能力	40		0	0	0	0	0		40	
分野横断的能力	0		0	0	0	0	0		0	