鹿児島	 	 身専門学校	文	2020年度)	授業科目			
科目基礎		3 (31 3 3 12						
科目番号		0042		科目区分 専門 / 必修				
授業形態		講義・演	習	単位の種別と単位	数 履修単位:	<u>l</u>		
開設学科		電気電子	工学科	対象学年	2			
開設期		前期		週時間数	2			
教科書/教	材			治・椿本博久 東京	電機大学出版局,	適宜プリントを配布する		
担当教員 到達目標	<u> </u>	逆瀬川 爿						
1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	を 対の計算ができ 別数の計算ができ シ計算ができ トルの計算ができ トルの計算ができ う計算ができ かっ計算ができ かっ計算ができる。	ができる。 きる。 きるできる。 きでる。 きできる。						
ルーブリ	<u> </u>							
			理想的な到達レベルの目安					
1			複素数を複素数表示,三角関数表示,極表示に変換する計算ができる。また,それぞれの四則演算ができる。	複素数を複素数表示,三角関数表示,極表示に変換する計算ができる。		複素数を複素数表示, 三角関数表示, 極表示に変換する計算ができ ない。		
2			ベクトルの和を複素数表示で,積 を極表示で計算できる。また,作 図でベクトルの四則演算を説明で きる。	ベクトルの和を複 を極表示で計算で	素数表示で,積 きる。	ベクトルの和を複素数表示で,積 を極表示で計算できない。		
3			加法定理を使って三角関数の計算ができる。また,加法定理を使って,三角関数の様々な公式の導出ができる。	三角関数の値を求められる。加法 定理を使って三角関数の計算がで きる。		三角関数の値を求められない。加 法定理を使って三角関数の計算が できない。		
4			1次関数, べき関数, 三角関数の微分ができる。合成関数の微分ができ、会成関数の微分ができ、変数が変わっても微分の計算できる。	1次関数, べき関数, 三角関数の微分ができる。関数の積, 商の微分ができる。		1次関数, べき関数, 三角関数の微分ができない。関数の積, 商の微分ができない。		
5			1次関数, べき関数, 三角関数の積分ができる。三角関数の合成関数の不定積分ができる。	1次関数, べき関数, 三角関数の積 分ができる。		1次関数, べき関数, 三角関数の積 分ができない。		
6			1次関数, べき関数, 三角関数の積分ができる。定積分を用いて様々な関数の面積を求めることができる。	1次関数, べき関数 分ができる。定積 数, 二次関数の面 ができる。	数, 三角関数の積 分を用いて1次関 積を求めること	1次関数, べき関数, 三角関数の積 分ができない。		
7			指数を使った応用問題を解ける。	単位の換算ができ	る。	単位の換算ができない。		
8			対数を使った応用問題を解ける。	対数の性質を使っ	た計算ができる	対数の性質を使った計算ができない。		
学的の母	11. 本口 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	目との関		٥		[() °		
			IIIホ 「到達目標 3-a					
教育方法		7丁日 秋日	打圧口保 J u					
	A +3	雷気雷子			数を含む正弦波の			
概要			の分野で取り扱われる数学の基本としることを目標とする。また,基礎的など					
授業の進め	か方・方法	交流回路	の取り扱いは,記号法による複素数の記る.また,微分,積分においては電気	計算が基本である. 回路系科目のみなら	記号法による計算で、会後修復する	は、2年次以降の電気回路系科目の		
\\			<u>る。よた,城が,横がためいては竜丸。</u> 演習を中心に授業を行う。また <u>,随</u> 時,					
注意点		もう一度	自分で解いてみること、また、疑問点	があればその都度質	問すること.			
授業計画	1							
		週	授業内容		過ごとの到達目標			
前期	1stQ	1週	交流回路の基礎	7000	コイルのみの単相交流回路の電圧と電流の位相関係を 微分の考え方に基づいて説明できる。(復習:複素数 の四則演算)			
		2週	交流回路の基礎		コンデンサのみの単相交流回路の電圧と電流の位相関 係を微分の考え方に基づいて説明できる。			
		3週	微分	Ą	一次関数、三角関数の微分ができる。微分の定義式で 導関数を求められる。べき関数の微分ができる。(復 習:三角関数)			
		4週	微分	利	積、商の関数の微分ができる。合成関数の微分ができる。(復習:加法定理、指数)			
		5週	微分	打	指数、対数の微分ができる. 合成関数の微分の演習。 (復習:対数)			
		6週	正弦波交流の表し方	Ī	正弦波交流を複素数表示・極表示・瞬時値などの表示方法で表現できる。			
		7週	正弦波交流の表し方(ベクトルの合成	1	簡単な交流回路(2直列、2並列)の電圧、電流の和 と差の計算ができる。			
		8週	定積分	祝	微分と積分の関係を説明できる。2つ関数に挟まれた面積を求めることができる。定数、一次関数、べき関数の定積分ができる。			

	2ndQ	9週	定和	積分			多項式の定積分、簡単な三角関数の定積分ができる. 色々な三角関数の定積分ができる。					
		10週	定和	定積分			正弦波交流の平均値、実効値を定積分を使って求める ことができる。色々な波形の平均値、実効値を求める ことができる。					
		11週	不	定積分			一次関数、べき関数、指数、対数、三角関数に関する 不定積分ができる。					
		12週	不	定積分			分数関数の不定積分ができる。					
		13週	不	定積分			合成関数の不定積分ができる.					
		14週	不	不定積分			合成関数の不定積分ができる.					
		15週		試験答案の返却・解説			試験答案の返却・解説					
		16週										
評価割合												
ā		試験		小テスト	相互評価	態度	ポートフォリオ	その他	合計			
総合評価割合		75		25	0	0	0	0	100			
基礎的能力		0		0	0	0	0	0	0			
専門的能力		75		25	0	0	0	0	100			
分野横断的能力		0		0	0	0	0	0	0			