鹿児	皇工業亭等		開講年度	令和03年度 (ž	2021年度)	拇	 業科目	電気数学Ⅱ	
<u></u>		<u>או׳ דר ו ולא ל</u>			2021年皮)	12:	*17口		
科目番号	K I FTX	0042			科目区分		専門 / 必	修	
授業形態		講義・演	<u> </u>			台数	履修単位		
開設学科			電気電子工学科			単位の種別と単位数履修単位:対象学年2		1	
開設期		前期	工于行			2			
		1	掘柱士郎•佐村敏	7			 出版局)/[問題集] 高専の数学問題集		
教科書/教	材	2, 3/そ	のほか授業中にプ	,电一分圣诞数于	-」(未示	电极八十	山城内// [问超来] 同寺の数子问超来		
担当教員		屋地 康平	<u> </u>						
到達目標									
 多項式 3. 簡単な 4. 複素数 5. 簡単な 	式関数・三角 は直流回路の 故の構成と表 な多項式関数	電力最大条例記法, ならで いまでは では、 では、 では、 でも でも でも でも でも でも でも でも でも でも でも でも でも	関数・対数関数・無件を求めることがで びに複素数平面に関	する数学的概念を 動数の不定積分を求る	理解し, これに「	フェーサ	「」の考え	方を加えた記号法の概念を説明できる	
ルーブ!	ノック				T				
					標準的な到達レ	標準的な到達レベルの目安		未到達レベルの目安	
1			標準的な到達レベルに加えて 複素数を含む簡単な代数方程式を 解くことができる. 複素数の累乗根の きる.		の多価性を説明で		複素数の累乗根の多価性を説明で きない.		
2			多項式関数・三角 なし ・対数関数・無理 求めることができる		理関数の				
3					の電力最大条件を				
4				の微分方程式を解 状態では複素数の く問題に帰着され	複素数の構成と表記法,なら複素数平面に関する数学的概理解し,これに「フェーザ」え方を加えた記号法の概念をできる.		4的概念を -ザ」の考	接来数十回に関する数子的似心で 理解できない。 塩素物である「コェーザ」の考え	
5			標準的な到達レベルに加えて 数関数・対数		簡単な多項式関 数関数・対数関 めることができ	関数・三角関数・指列数の不定積分を求る.		簡単な多項式関数・三角関数・指 数関数・対数関数の不定積分を求 めることができない.	
			標準的な到達レベルに加えて正弦波交流		正弦波交流の平めることができ	平均値・実効値を求 さる.		正弦波交流の平均値・実効値を定 積分を使って求めることができない.	
学科の3	到達目標項	目との関	係						
本科 (準	学士課程) 0	D学習・教育	到達目標 3-a						
教育方法	去等								
概要	め方・方法		の分野で取り扱われます. 加えて, 微程 習を織り交ぜて授美		て,複素数平面上 手法に習熟するこ	の指数間	関数を理解 票とします	(し, 四則演算手法に習熟することを 	
注意点		受講にあ 講義終了 不定期で 疑問点を	たり複素数の四則濱 後は必ず復習として 小テストを実施する うやむやにしないこ	質算を完全にマスタ で演習問題等を必ず		こと.			
		8上の区分							
□ アクラ	ティブラーニ	ング	│□ ICT 利用		□ 遠隔授業対応	<u> </u>		│□ 実務経験のある教員による授業	
授業計画									
<u>'X**01</u> L	1	週				调ブレ	 の到達目	=	
前期	1stQ		12条内台 複素数と複素数平同		複素数				
		2週	複素数と複素数平		複素数	複素数平面上における複素数の幾何的演算につい解する. ド・モアブルの定理について理解する.			
		3週	複素数と複素数平向		複素数平面上の円の表式について理解する。複素数の 累乗根の多価性を理解する。複素数を含む簡単な代数 方程式を解くことができる。				
		4週	微分法			関数の極限値と連続について説明できる。 微分係数と導関数について説明できる。			
		5週	微分法			多項式関数・三角関数・指数関数・対数関数・無理関数の導関数を求めることができる.			
		6週	微分法			関数の積・商で表される関数の導関数を求めることができる。 できる。合成関数の導関数を求めることができる。			
		7週	極値問題		関数の極値について説明できる. 簡単な直流回路の電力最大条件を求めることができる.				
		8週	記号法による交流回路			交流のRLC回路の微分方程式を解く問題が,定常状態では複素数の代数方程式を解く問題に帰着されることを説明できる。			

		9週	記号法による交流回	路		複素数の構成と表記法,ならびに複素数平面に関する 数学的概念を理解し,これに「フェーザ」の考え方を 加えた記号法の概念を説明できる.					
		10週	積分法(不定積分)			不定積分の定義,微積分学の基本定理を説明できる.					
		11週	積分法(不定積分)			簡単な多項式関数・三角関数・指数関数・対数関数の 不定積分を求めることができる.					
2	2ndQ	12週	積分法(定積分)			定積分の定義を説明できる。 多項式関数・三角関数・指数関数・対数関数の定積分 を求めることができる。					
		13週	積分法(定積分)			2つの関数のグラフに挟まれた部分の面積を求めることができる.					
		14週	交流の平均値・実効値			正弦波交流の平均値・実効値を定積分を使って求める ことができる. 正弦波以外の単純な波形の平均値・実効値を求めるこ とができる.					
		15週	試験答案の返却・解説			試験答案の返却・解説					
		16週									
評価割合											
	試	 験	小テスト					合計			
総合評価割合	<u></u> 50)	50	0	0	0	0	100			
基礎的能力	0		0	0	0	0	0	0			
専門的能力	50)	50	0	0	0	0	100			
分野横断的能	能力 0		0	0	0	0	0	0			