鹿児島	島工業高	 等専門学校	· · · · · · · · · · · · · · · · · · ·		授	 業科目	電磁気学V	
科目基礎	特情報			,				
科目番号	CIIJIK	0092		科目区分	I	専門 / 必	6條	
授業形態		講義		単位の種別と単位		<u> </u>		
開設学科		電気電子	7丁学初	対象学年				
			- 上子科	週時間数		5		
開設期		前期				1		
教科書/教	材	気学」(森北出版),「新応用数学」(大日本図書	宮山進・竹川敦「マクスウェル方程式から始める 電磁 比出版),「新応用数学」(大日本図書)			/ [参考書]女立二即・大員茶雄「竜懺	
担当教員		屋地 康	T					
到達目標	票							
		はマクスウ : 理解を深める	ェル方程式で表されることを理解した上 3.	で、マクスウェル	方程式を	を起点とし	」, 電磁気学 I〜IVで学習した様々な	
ルーブリ	ノック							
			理想的な到達レベルの目安	標準的な到達レイ	ベルの目	安	未到達レベルの目安	
評価項目1			曲線や曲面の基礎的な性質を正し く理解し、正しい数式で表すこと ができる.	曲線や曲面の基礎的な性質を概ね 正しく理解している.			曲線や曲面の基礎的な性質をあまり理解していない.	
評価項目2	2		ベクトル場とスカラー場の意味 , ベクトル場の流束と循環の概要 を正しく理解し, 積分形で表され たマクスウェル方程式について説 明できる.	ベクトル場とスカラー場の意味 、ベクトル場の流束と循環の概要 を概ね正しく理解し、積分形で表 されたマクスウェル方程式につい て説明できる.			- をあまり理解していない、積分形	
評価項目3	3		スカラー場とベクトル場の微分 ,ならびにベクトル場の積分の概 要を正しく理解し,Gaussの定理 ・Stokesの定理について説明でき る.	スカラー場とベクトル場の微分 ,ならびにベクトル場の積分の概 要を概ね正しく理解し,Gaussの 定理・Stokesの定理について説明 できる.			要をあまり理解していない	
評価項目4			なし	微分形で表された 程式について説明			微分形で表されたマクスウェル方 程式について説明できない.	
評価項目5			静電ポテンシャルとポアソン方程 式の概要を正しく理解している.	静電ポテンシャルとポアソン方程 式の概要を概ね正しく理解してい る.			静電ポテンシャルとポアソン方程 式の概要をあまり理解していない・	
評価項目6	5		ベクトルポテンシャルの概要を正 しく理解している.	ベクトルポテンシャルの概要を概ね正しく理解している.			ベクトルポテンシャルの概要をあ まり理解していない.	
学科の至]]達目標I	項目との関	写 係					
教育プログ	ブラムの学	習・教育到過	達目標 3-1 本科(準学士課程)の学習・	教育到達日標 3-2	a 本科(進学十課		
教育方法								
概要		まず,電 て,様々 たものか	目は,教員の企業での電磁界計算の経験 電磁気学の基本法則はマクスウェル方程 な電磁気現象を簡単な例で考察します がほとんどですが,これらに曲線や曲面 長せることが分かります.	式で表されること	を理解し	/ます. ガ	マに、マクスウェル方程式を起点とし、	
授業の進め方・方は 基本的に			こることがあるが、 講義は教科書に沿って行います. 電磁気学に必要な解析学の手法(曲線や曲面の性質)を, 前半の授業でパワ ト資料で掻い摘まんで説明します.					
注意点		, 上記 <i>o</i>	は、学修単位(講義 I)の科目です. 講)数学的性質のほか、ベクトル場とスカ とい). 中間試験を実施します(7 週目	ラー場の違い,微な	計間の自分・積分	学自習時 かな質的	間が必要です(自学自習においては 別な役割に注意しながら, 学習を進め	
授業計画		'						
		週	授業内容		週ごとの	の到達目		
前期	1stQ	1週	曲線や曲面の基礎的な性質		1変数の解析学における微分の基礎を理解する.			
		2週	曲線や曲面の基礎的な性質					
					1変数の解析学における積分の基礎を理解する.			
		3週	曲線や曲面の基礎的な性質		多変数の解析学における微分の基礎を理解する.			
		5週	曲線や曲面の基礎的な性質 ベクトル場の流束と循環,マクスウェ 形)	多変数の解析学における積分の基礎を理解する. ベクトル場とスカラー場の意味、ベクトル場の流束と 循環の概要を理解し、積分形で表されたマクスウェル 方程式について説明できる.				
		6週	ベクトル場とスカラー場の微積分			スカラー場とベクトル場の微分,ならびにベクトル場の積分の概要を理解し、Gaussの定理・Stokesの定理について説明できる。		
		7週	マクスウェル方程式(微分形)	微分形で表されたマクスウェル方程式について説明で きる.				
		8週	静電気, 電場, 静電ポテンシャル			静電ポテンシャルとポアソン方程式の概要を理解し ,簡単な例について電場と静電ボテンシャルを求める ことができる.		
	2ndQ	9週	静電エネルギー			静電エネルギーの概要を理解し、簡単な例について静電場のエネルギーを求めることができる.		
		10週	誘電体			分極ベクトルと分極電荷の概要を理解し、簡単な例について誘電体内外の電場と誘電体のエネルギーを求めることができる.		
		11週	静磁気		ベクトルポテンシャルの概要を理解し,ビオ-サバールの法則,磁気モーメントについて説明できる.簡単な例について,電流にはたらく磁気力を求めることができる.			
						ハし, 电/		

		13週	物質中の電磁気学 遅延ポテンシャル 試験答案の返却・解説			変位電流の概要を理解し、物質中のマクスウェル方程 式について説明できる.				
		14週				電荷密度と電流密度が時間変動する場合の遅延時間の 概要を理解し、遅延ポテンシャルについて説明できる				
		15週				試験において間違った部分を自分の課題として把握する (非評価項目).				
		16週								
評価割合										
			定期試験		レポート・小テスト		合計			
総合評価割合			75		25		100			
基礎的能力			0		0		0			
専門的能力			75		25		100			
分野横断的能力			0	·	0		0			