鹿児島工業高等専門学校		開講年度	平成29年度	(2017年度)	授	業科目	微分方程式
科目基礎情報							
科目番号	0017			科目区分	目区分 一般 / 必修		修
授業形態	講義			単位の種別と単位	数	履修単位: 1	
開設学科	情報工学科			対象学年		3	
開設期	後期			週時間数		2	
教科書/教材	「微分方程式要論」田代嘉宏 著、森北出版 「新微分積分 II 」 高遠節夫 ほか著、大日本図書。「新微分積分 II 問題集 」 高遠節夫 ほか著、大日本図書 「新編 高専の数学 3 問題集(第 2 版)」田代嘉弘 編、森 北出版						
担当教員	拜田 稔						
到達曰標							

- 1. 階数低下法を用いた 2 階微分方程式 2. 定数変化法を用いた 2 階線が分方程式 3. 未定係数法や定数変化法を用いた定数係数 2 階線形微分方程式 4. 演算子法を用いた定数係数同次線形微分方程式 5. 演算子法を用いた定数係数非同次線形微分方程式 6. 演算子法を用いたオイラーの線形微分方程式 7. 演算子法を用いた連立線形微分方程式

ルーブリック

10 2 2 2 2			
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	階数低下法を用いた様々な2階微分方程式を解くことができる。	階数低下法を用いた簡単な2階微 分方程式を解くことができる。	階数低下法を用いた簡単な2階微分方程式を解くことができない。
評価項目2	定数変化法を用いた様々な2階線	定数変化法を用いた簡単な2階線	定数変化法を用いた簡単な2階線
	形微分方程式を解くことができる	形微分方程式を解くことができる	形微分方程式を解くことができな
	。	。	い。
評価項目3	未定係数法や定数変化法を用いた	未定係数法や定数変化法を用いた	未定係数法や定数変化法を用いた
	様々な定数係数2階線形微分方程	簡単な定数係数2階線形微分方程	簡単な定数係数2階線形微分方程
	式を解くことができる。	式を解くことができる。	式を解くことができない。
評価項目4	演算子法を用いた様々な定数係数	演算子法を用いた簡単な定数係数	演算子法を用いた簡単な定数係数
	同次線形微分方程式を解くことが	同次線形微分方程式を解くことが	同次線形微分方程式を解くことが
	できる。	できる。	できない。
評価項目5	演算子法を用いた様々な定数係数	演算子法を用いた簡単な定数係数	演算子法を用いた簡単な定数係数
	非同次線形微分方程式を解くこと	非同次線形微分方程式を解くこと	非同次線形微分方程式を解くこと
	ができる。	ができる。	ができない。
評価項目6	演算子法を用いた様々なオイラー	演算子法を用いた簡単なオイラー	演算子法を用いた簡単なオイラー
	の線形微分方程式を解くことがで	の線形微分方程式を解くことがで	の線形微分方程式を解くことがで
	きる。	きる。	きない。
評価項目7	演算子法を用いた様々な連立線形 微分方程式を解くことができる。	演算子法を用いた簡単な連立線形 微分方程式を解くことができる。	演算子法を用いた簡単な連立線形 微分方程式を解くことができない 。

学科の到達目標項目との関係

本科(準学士課程)の学習・教育到達目標 3-a

教育方法等

概要	(1)数学基礎A1〜B2、微分積分Ⅰ・Ⅱ、線形代数Aの基礎知識を前提とする。 (2)微分方程式は工学の基礎である。				
授業の進め方・方法	講義形式。適宜演習。				
注意点	(1) 教科書や配布プリントを参考に予習を行うこと。授業に集中すること。 (2) 受講後は問題集などで問題を解き、解法を身に付けること。				

授業計画

		週	授業内容	週ごとの到達目標			
3rdQ		1週	2 階微分方程式: 1 階常微分方程式に なおす方法	2階微分方程式を1階微分方程式になおして解くことができる。			
		2週	1 階常微分方程式に なおす方法	2階微分方程式を1階微分方程式になおして解くことができる。			
		3週	2 階線形微分方程式	ロンスキーの行列式を計算できる。 関数の1次独立・1次従属を説明できる。			
		4週	2階線形微分方程式	簡単な2階線形微分方程式を解くことができる。			
	3rdQ	5週	定数係数 2 階線形微分 方程式	定数係数 2 階線形微分方程式を解くことができる。			
		6週	定数係数2階線形微分 方程式	定数係数 2 階線形微分方程式を解くことができる。			
後期 4thQ		7週	定数係数2階線形微分 方程式	定数係数2階線形微分方程式を解くことができる。			
		8週	線形微分方程式と 演算子法:定数係数同次線形微分 方程式	微分演算子を用いて定数係数同次線形微分方程式を解 くことができる。			
		9週	定数係数同次線形微分 方程式	微分演算子を用いて定数係数同次線形微分方程式を解 くことができる。			
	4+60	10週	定数係数非同次線形微分 方程式	逆演算子を用いて定数係数非同次線形微分方程式を解 くことができる。			
	4triQ	11週	定数係数非同次線形微分 方程式	逆演算子を用いて定数係数非同次線形微分方程式を解 くことができる。			
		12週	定数係数非同次線形微分 方程式	逆演算子を用いて定数係数非同次線形微分方程式を解 くことができる。			

	13週	変数係数線形微			オイラーの線形微	オイラーの線形微分方程式を解くことができる。			
	14週					演算子法で連立線形微分方程式を解くことができる。			
	15週	試験答案の返却・解説			試験において間違 る(非評価項目)	試験において間違えた部分を自分の課題として把握する(非評価項目)。			
	16週								
評価割合									
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計		
総合評価割合	75	0	0	0	0	25	100		
基礎的能力	75	0	0	0	0	25	100		
専門的能力	0	0	0	0	0	0	0		
分野横断的能力	0	0	0	0	0	0	0		