鹿児島T	業高等	等專門学校	開講年度	令和02年度 (2	(020年度)	授	業科目	超伝導工学
科目基礎情		3 (31 3 3 1/2	1/13213 1 /2					
1 1 日 <u>年 7 2 1 2</u> 科目番号					科目区分	科目区分 専門 / 選択		
		講義			単位の種別と単位数 学修単位:			
			· ステム工学専攻		対象学年			
開設期前期					週時間数	間数 2		
教科書/教材 なし (必要に応じて, プリント			ノトを配布)					
⊒当教員		堀江 雄二						
到達目標								
. 超伝導規 2. 代表的な 3. 強電分野	家につい 超伝導材 における における	へて,各々説は 料についての 応用例を挙げ	月できる. ∂類でき, それらの fて, その動作原理	は、以下に掲げる4・ D特徴等を説明でき 理や実状・問題点等 理や実状・問題点等	る. について説明でき	る.		重要性を理解した上で,応用に際して
<u> </u>	<u> </u>		理想的な到達レ	 ベルの日安			 3 <i>字</i> ;	未到達レベルの目安
評価項目1			設定なし	VVVJLX	超伝導の特徴的な現象について , 各々説明できる.			超伝導の特徴的な現象について , 各々説明できない.
評価項目2			超伝導の特徴的。) について説明 た理論的取扱い	な値(λ, ξ, κほか でき, 数式を用い ができる.	代表的な超伝導材料について分類できる。また、第1種超伝導体と第2種超伝導体についても説明できる。		ついて分類 2伝導体と ても説明で	代表的な超伝導材料について分類 できない、また、第1種超伝導体 と第2種超伝導体についても説明 できない。
評価項目3			強電分野での応り 状・問題点等を の解決案を提示	用例において,実 踏まえて,何らか できる.	強電分野における応用例を挙げて , その動作原理について説明でき る.		列を挙げて て説明でき	強電分野における応用例を挙げて , その動作原理について説明でき ない.
評価項目4				用例において,実 踏まえて,何らか できる.			列を挙げて C説明でき	強電分野における応用例を挙げて , その動作原理について説明でき ない.
学科の到達	目標項	目との関係	系					
学習・教育到 ABEE(2012 教育プログラ	2) 基準	1(2)(d)(1)						
教育方法等	Σ F							
概要 様々な専門分野の境界に位置する超伝導を例に学ぶことで、各専攻科生の専門分野と先端技術の関わりを認識するとともに、創造力に富んだ技術者としての素養を養う.								
受業の進め方	・方法	講義形式を	を基本とする. 全専	事政共通科目ではある。	るが,数学,電磁等	気学 <i>,</i>	物性学等の	基礎学力を必要とする.
注意点			こ関連する内容にて うわなければならな		が必要である.加	えて適	宜レポート	〜等を課すので,毎回210分以上の自
受業計画								
			受業内容				の到達目標	
			20伝導現象①					は現象について,各々説明できる.
			2公導現象②					は現象について,各々説明できる.
			超伝導現象③					は現象について,各々説明できる. オ料について分類でき,それらの特徴
		4週 月	超伝導材料① 			等を説	,明できる.	
115	stO	5週 5	21伝導材料②			カー性	旭江寺体へ	と第2種超伝導体について理解し,混 ヒスス磁束フローについて説明できる

			週	授業内容	週ごとの到達目標
		1stQ	1週	超伝導現象①	超伝導の特徴的な現象について,各々説明できる.
			2週	超伝導現象②	超伝導の特徴的な現象について,各々説明できる.
			3週	超伝導現象③	超伝導の特徴的な現象について,各々説明できる.
			4週	超伝導材料①	代表的な超伝導材料について分類でき, それらの特徴 等を説明できる.
			5週	超伝導材料②	第1種超伝導体と第2種超伝導体について理解し,混合状態や渦糸および磁束フローについて説明できる.
			6週	超伝導材料③	超伝導現象利用時における冷却技術について説明できる
			7週	強電分野への応用①	強電分野における応用例を挙げて,その動作原理や実 状・問題点等について説明できる.
			8週	強電分野への応用②	強電分野における応用例を挙げて,その動作原理や実 状・問題点等について説明できる.
	前期	2ndQ	9週	強電分野への応用③	強電分野における応用例を挙げて,その動作原理や実 状・問題点等について説明できる.
			10週	強電分野への応用④	強電分野における応用例を挙げて,その動作原理や実 状・問題点等について説明できる.
			11週	弱電分野への応用①	弱電分野における応用例を挙げて, その動作原理や実 状・問題点等について説明できる
			12週	弱電分野への応用②	弱電分野における応用例を挙げて, その動作原理や実 状・問題点等について説明できる
			13週	弱電分野への応用③	弱電分野における応用例を挙げて, その動作原理や実 状・問題点等について説明できる
			14週	弱電分野への応用④	弱電分野における応用例を挙げて, その動作原理や実 状・問題点等について説明できる
			15週	定期試験試験答案の返却・解説	授業内容に対して達成度を確認する. 試験において間違った部分を自分の課題として把握する(非評価項目).
			4 C \H		

	16週			
評価割合	•			
		試験	レポート	合計

総合評価割合	60	40	100
基礎的能力	0	0	0
専門的能力	60	40	100
分野横断的能力	0	0	0